Plotting graph with for-end loop in
24 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Peter Kinsley
le 18 Fév 2020
Commenté : Peter Kinsley
le 18 Fév 2020
How do i plot a graph of the data in the for-end loop.
Looking to plot a varying Vf against Ex,Ey,Gxy,vxy.
>> %Setting all original variables
Em=2.4e9;
Ef=76e9;
vm=0.34;
vf=0.22;
theta=30;
for Vf=0:0.1:1
Vm=1-Vf;
%Finding shear and bulk modulus'
Gm=Em/(2*(1+vm));
Gf=Ef/(2*(1+vf));
Km=Em/(3*(1-2*vm));
Kf=Ef/(3*(1-2*vf));
%Find k*,E1,v12,G12
k=(Km*(Kf+Gm)*Vm+Kf*(Km+Gm)*Vf)/((Kf+Gm)*Vm+(Km+Gm)*Vf);
E1=Em*Vm+Ef*Vf;
v12=vm*Vm+vf*Vf+((vf-vm)*((1/Km)-(1/Kf))*Vm*Vf)/((Vm/Kf)+(Vf/Km)+(1/Gm));
G12=Gm+(Vf/((1/(Gf-Gm))+(Vm/(2*Gm))));
%Beta's, gamma's, alphas and roe
betam=1/(3-4*vm);
betaf=1/(3-4*vf);
gamma=Gf/Gm;
alpha=(betam-gamma*betaf)/(1+gamma*betaf);
roe=(gamma+betam)/(gamma-1);
%G23, E2 and v23
G23=Gm*(1+((1+betam)*Vf)/(roe-(1+(3*betam^2*Vm^2)/(alpha*Vf^3+1))*Vf));
E2=4/((1/G23)+(1/k)+(4*v12^2/E1));
v23=(E2/2*G23)-1;
%Creating reduced lamina stiffness matrix
Z=(E1-v12^2*E2)/E1;
Q11=E1/Z;
Q22=E2/Z;
Q12=v12*E2/Z;
Q66=G12;
Q=[Q11,Q12,0;Q12,Q22,0;0,0,Q66];
%Transformation matrices
n=sind(theta);
m=cosd(theta);
q11=Q11*m^4+Q22*n^4+2*m^2*n^2*(Q12+2*Q66);
q12=m^2*n^2*(Q11+Q22-4*Q66)+(m^4+n^4)*Q12;
q16=(Q11*m^2-Q22*n^2-(Q12+2*Q66)*(m^2-n^2))*m*n;
q22=Q11*n^4+Q22*m^4+2*m^2*n^2*(Q12+2*Q66);
q26=(Q11*n^2-Q22*m^2+(Q12+2*Q66)*(m^2-n^2))*m*n;
q66=(Q11+Q22+Q12*2)*m^2*n^2+Q66*((m^2-n^2)^2);
q=[q11,q12,q16;q12,q22,q26;q16,q26,q66];
%Finally calculating the laminate properties
Ex=q11-q12^2/q22
Ey=q22-q12^2/q11
Gxy=q66
vxy=q12/q22
end
0 commentaires
Réponse acceptée
Bhaskar R
le 18 Fév 2020
%Setting all original variables
Em=2.4e9;
Ef=76e9;
vm=0.34;
vf_samll=0.22;
theta=30;
Vf=0:0.1:1;
Ex = zeros(1, length(Vf));
Ey = zeros(1, length(Vf));
Gxy = zeros(1, length(Vf));
vxy = zeros(1, length(Vf));
c = 1;
for ii = 1:length(Vf)
Vm=1-Vf(ii);
%Finding shear and bulk modulus'
Gm=Em/(2*(1+vm));
Gf=Ef/(2*(1+vf_samll));
Km=Em/(3*(1-2*vm));
Kf=Ef/(3*(1-2*vf_samll));
%Find k*,E1,v12,G12
k=(Km*(Kf+Gm)*Vm+Kf*(Km+Gm)*Vf(ii))/((Kf+Gm)*Vm+(Km+Gm)*Vf(ii));
E1=Em*Vm+Ef*Vf(ii);
v12=vm*Vm+vf_samll*Vf(ii)+((vf_samll-vm)*((1/Km)-(1/Kf))*Vm*Vf(ii))/((Vm/Kf)+(Vf(ii)/Km)+(1/Gm));
G12=Gm+(Vf(ii)/((1/(Gf-Gm))+(Vm/(2*Gm))));
%Beta's, gamma's, alphas and roe
betam=1/(3-4*vm);
betaf=1/(3-4*vf_samll);
gamma=Gf/Gm;
alpha=(betam-gamma*betaf)/(1+gamma*betaf);
roe=(gamma+betam)/(gamma-1);
%G23, E2 and v23
G23=Gm*(1+((1+betam)*Vf(ii))/(roe-(1+(3*betam^2*Vm^2)/(alpha*Vf(ii)^3+1))*Vf(ii)));
E2=4/((1/G23)+(1/k)+(4*v12^2/E1));
v23=(E2/2*G23)-1;
%Creating reduced lamina stiffness matrix
Z=(E1-v12^2*E2)/E1;
Q11=E1/Z;
Q22=E2/Z;
Q12=v12*E2/Z;
Q66=G12;
Q=[Q11,Q12,0;Q12,Q22,0;0,0,Q66];
%Transformation matrices
n=sind(theta);
m=cosd(theta);
q11=Q11*m^4+Q22*n^4+2*m^2*n^2*(Q12+2*Q66);
q12=m^2*n^2*(Q11+Q22-4*Q66)+(m^4+n^4)*Q12;
q16=(Q11*m^2-Q22*n^2-(Q12+2*Q66)*(m^2-n^2))*m*n;
q22=Q11*n^4+Q22*m^4+2*m^2*n^2*(Q12+2*Q66);
q26=(Q11*n^2-Q22*m^2+(Q12+2*Q66)*(m^2-n^2))*m*n;
q66=(Q11+Q22+Q12*2)*m^2*n^2+Q66*((m^2-n^2)^2);
q=[q11,q12,q16;q12,q22,q26;q16,q26,q66];
%Finally calculating the laminate properties
Ex(c)=q11-q12^2/q22;
Ey(c)=q22-q12^2/q11;
Gxy(c)=q66;
vxy(c)=q12/q22;
c =c+1;
end
plot(Vf, Ex, Vf, Ey, Vf, Gxy, Vf, vxy);
grid on , legend({'Ex', 'Ey', 'Gxy', 'vxy'})
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Loops and Conditional Statements dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!