Info

Cette question est clôturée. Rouvrir pour modifier ou répondre.

error occured during fusion with GLCM and invarient moment feature

1 vue (au cours des 30 derniers jours)
Balaji M. Sontakke
Balaji M. Sontakke le 25 Fév 2020
Clôturé : MATLAB Answer Bot le 20 Août 2021
Here i combined(fused) two different type of features i.e invarient moment and GLCM. When i classify with individual invarient moment or GLCM i got 98.75 % accuracy but when i combine these two features with following program i got 25% accuracy, what is the problem in my program i dont understand.
clear all;
clc;
tic; %% calculating elapsed time for execution
%% load mat files
test = {load('db3.mat'),load('db5.mat')};
train = {load('db4.mat'),load('db6.mat')};
n1 = cellfun(@fieldnames,test,'un',0);
n2 = cellfun(@fieldnames,train,'un',0);
V1 = cellfun(@(x,y)[x.(y)],test,[n1{:}],'un',0);
V2 = cellfun(@(x,y)[x.(y)],train,[n2{:}],'un',0);
P_test = cell2mat(reshape(cat(1,V1{:}),100,[])); %for 100 classes
P_train = cell2mat(reshape(cat(1,V2{:}),200,[])); %for 100 classes
%% labeling class
train_label=load('train_label_100.txt');
test_label=load('test_label_100.txt');
%% Normalisation by Z - Scores
P_train = zscore(P_train,0,2);
P_test =zscore(P_test,0,2);
%% classfication
predictlabel = knnclassify(P_test, P_train, train_label,2,'cosine','nearest');
cp = classperf(test_label,predictlabel);
Conf_Mat = confusionmat(test_label,predictlabel);
disp(Conf_Mat);
%% % Evaluate Performance
[FPR, TPR,Thr, AUC, OPTROCPT] = perfcurve(predictlabel, test_label,1);
figure,
plot(TPR,FPR,'r-','LineWidth',1);
xlabel('False positive rate')
ylabel('True positive rate')
title('ROC Curve for Classification ')
t = table(FPR, TPR, Thr);
fprintf('\n\n Overall accuracy:%f%%\n',cp.CorrectRate*100);
%% calculating elapsed time for execution
toc

Réponses (0)

Cette question est clôturée.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by