Symbolic Solutions That Populate a Vector
5 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I am trying to approximate a solution to the Riccati equation. To do this, I have a final value and work backwards to obtain all previous values. The issue is that in this particular case the solution needs to be symbolic bexause it depends on a function of time that will be calculated later. The code I came up with is listed below. This works very well when there is no symbolic variable to deal with.
% P(tf)
P_11(length(t)) = F(1,1);
P_12(length(t)) = F(1,2);
P_22(length(t)) = F(2,2);
% Solve Riccati eqn backwards
syms z;
for n=length(t) : -1 : 2
P_11_dot = P_12(n)^2 + 3*z*P_12(n) + 3*P_12(n)*z - 1;
P_12_dot = 2*P_12(n) - P_11(n) + P_12(n)*P_22(n) + 3*P_22(n)*z;
P_22_dot = 4*P_22(n) - 2*P_12(n) + P_22(n)^2;
P_11(n-1) = P_11(n) - P_11_dot*step;
P_12(n-1) = P_12(n) - P_12_dot*step;
P_22(n-1) = P_22(n) - P_22_dot*step;
end
the error message i get is this;
The following error occurred converting from sym to double:
Unable to convert expression into double array.
Error in LTV_SYS (line 56)
P_11(n-1) = P_11(n) - P_11_dot*step;
The idea is to then calculate z using the code below. Here, I know the initial conditions and since my symbolic variable (z) is a state, I should be able to substitute in for it. The problem is I can't get to this point because of the above error.
% Initialize state vector
x(:,1) = x0;
% Solve for optimal state and control
for n=1 : length(t)-1
z = x(1,n);
A = [0 1; -3*z -2];
P = [P_11(n) P_12(n); P_12(n) P_22(n)];
K(n,:) = inv(R)*B'*P;
U(n+1) = -K(n,:)*x(:,n);
x_dot = A*x(:,n)+B*U(n+1);
x(:,n+1) = x(:,n) + x_dot*step;
end
I appreciate any help that anyone can offer.
0 commentaires
Réponses (1)
Walter Roberson
le 11 Mar 2020
P_11(length(t)) = sym(F(1,1));
P_12(length(t)) = sym(F(1,2));
P_22(length(t)) = sym(F(2,2));
7 commentaires
Walter Roberson
le 11 Mar 2020
"You can use digits() to control the precision you want to execute to."
Voir également
Catégories
En savoir plus sur Number Theory dans Help Center et File Exchange
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!