Info
Cette question est clôturée. Rouvrir pour modifier ou répondre.
* Edit post * Report this post * Reply with quote Numerical result of the solve function
3 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I'm Seeking the common points to the parabola and the circle centered in the point A(Xa,Za)with AB radius.
Why not assume the function 'solve' the values of Xa, Za and AB in the equation and thus obtain a numerical result rather than analytical in the first call?
Xa=.5 Za=1 AB=1
%----------------------CÁLCULOS---------------------------------------------- % Za=1/(4*F)*Xa^2 - equation of the parabola that passes the point A(Xa,Za) % Zb=1/(4*F)*Xb^2; - equation of the parabola that passes the point B(Xb,Zb) % (Xb-Xa)^2+(Zb-Za)^2=AB^2 -equation of the circle of radius AB centered at the point A(Xa,Za) %............................................................................
% first call SOLVE [F,Xb,Zb]=solve('1/(4*F)*Xa^2-Za','1/(4*F)*Xb^2-Zb','(Xb-Xa)^2+(Zb-Za)^2-AB^2');
% call SOLVE with the values of Xa,Za,AB the result are numeric %--------------------------------------------------------------- [F,Xb,Zb]=solve('1/(4*F)*.5^2-1','1/(4*F)*Xb^2-Zb','(Xb-.5)^2+(Zb-.5)^2-1^2');
appreciate any help
0 commentaires
Réponses (1)
Walter Roberson
le 27 Jan 2011
[F,Xb,Zb]=solve(subs('1/(4*F)*Xa^2-Za','1/(4*F)*Xb^2-Zb'),subs('(Xb-Xa)^2+(Zb-Za)^2-AB^2'));
0 commentaires
Cette question est clôturée.
Voir également
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!