Hyperparamter optimization - how to manually specify SVM kernel functions to try using optimizableVariable
14 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I am following the example here to perform hyperparameter optimization by specifying possible candidate values of parameters:
Code I am running:
% Load dataset - ionoshpere
load ionosphere
dataX = X;
dataY = Y;
cvo = cvpartition(dataY, 'KFold', nFolds);
% box = optimizableVariable('box', []);
kernel = optimizableVariable('kernel', {'gaussian', 'polynomial'}, 'Type', 'categorical');
kernelScale = optimizableVariable('kernelScale', [1, 30]);
polyOrder = optimizableVariable('polyOrder', [2, 3], 'Type', 'integer');
fun = @(x)svmfun(x, dataX, dataY, cvo);
results = bayesopt(fun, [kernel, kernelScale, polyOrder]);
function [objective] = svmfun(x, dataX, dataY, cvo)
svmModel = fitcsvm(dataX, dataY, ...
'BoxConstraint', 1, ...
'KernelFunction', x.kernel, ...
'KernelScale', x.kernelScale, ...
'PolynomialOrder', x.polyOrder, ...
'Standardize', true, ...
'CVPartition', cvo, ...
'ClassNames', [0, 1]);
[label, score] = kfoldPredict(svmModel);
loss = kfoldLoss(svmModel);
[~, ~, ~, aucRoc] = perfcurve(dataY, score(:,2), 1);
[~, ~, ~, aucPrc] = perfcurve(dataY, score(:,2), 1, ...
'xCrit', 'tpr', 'yCrit', 'prec');
aucRocLoss = 1 - aucRoc;
aucPrcLoss = 1 - aucPrc;
objective = loss;
end
I get the following error:
Error using classreg.learning.modelparams.SVMParams.make
(line 225)
'KernelFunction' value must be a character vector or string
scalar.
Error in classreg.learning.FitTemplate/fillIfNeeded (line
660)
this.MakeModelParams(this.Type,this.MakeModelInputArgs{:});
Error in classreg.learning.FitTemplate.make (line 125)
temp = fillIfNeeded(temp,type);
Error in classreg.learning.FitTemplate/fillIfNeeded (line
480)
classreg.learning.FitTemplate.make(this.Method,'type',this.Type,...
Error in classreg.learning.FitTemplate.make (line 125)
temp = fillIfNeeded(temp,type);
Error in ClassificationSVM.template (line 235)
temp =
classreg.learning.FitTemplate.make('SVM','type','classification',varargin{:});
Error in ClassificationSVM.fit (line 239)
temp = ClassificationSVM.template(varargin{:});
Error in fitcsvm (line 343)
obj = ClassificationSVM.fit(X,Y,RemainingArgs{:});
Error in svmHyperparameterOptimization>svmfun (line 25)
svmModel = fitcsvm(dataX, dataY, ...
Error in
svmHyperparameterOptimization>@(x)svmfun(x,dataX,dataY,cvo)
(line 13)
fun = @(x)svmfun(x, dataX, dataY, cvo);
Error in BayesianOptimization/callObjNormally (line 2553)
Objective =
this.ObjectiveFcn(conditionalizeX(this,
X));
Error in BayesianOptimization/callObjFcn (line 481)
= callObjNormally(this, X);
Error in BayesianOptimization/runSerial (line 1989)
ObjectiveFcnObjectiveEvaluationTime,
ObjectiveNargout] = callObjFcn(this,
this.XNext);
Error in BayesianOptimization/run (line 1941)
this = runSerial(this);
Error in BayesianOptimization (line 457)
this = run(this);
Error in bayesopt (line 323)
Results = BayesianOptimization(Options);
Error in svmHyperparameterOptimization (line 15)
results = bayesopt(fun, [kernel, kernelScale, polyOrder]);
I believe KernelFunction is eligible parameters for the hyperparameter tuning:https://www.mathworks.com/help/stats/fitcsvm.html#d120e288389
But I have no clue why it doesn't work. Any help will be greatly appreciated
0 commentaires
Réponse acceptée
Plus de réponses (2)
Kani Mozhi
le 26 Avr 2021
This might help
https://researchprojects5489728.wordpress.com/matlab-code-for-hyper-parameter-optimization-of-svm-2/
0 commentaires
Kani Mozhi
le 20 Avr 2022
Modifié(e) : Kani Mozhi
le 20 Avr 2022
Here's a code for SVM parameter optimization using HHO algorithm - Code
0 commentaires
Voir également
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!