Is it s defect that the fitcsvm() function picked some "far away" points as the support vectors?
3 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hi,
I used fitcsvm() to run SVM on some data with Gaussian kernel.
The yellow circled points are the support vector.
However, some points at the bottom shouldn't be support vectors, as they are far away from the decision boundary.
Therefore picking them as support vectors is not reasonable.
I wonder if they are mistakenly picked by the algorithm? Is that a defect?
The data.mat file is as attached.
Thanks.
Code
clear;
close all;
load('data','feature','label');
X = feature;
Y = label;
%% Computation
SVMModel = fitcsvm(X,Y,'ClassNames',[false true],'Standardize',true,...
'KernelFunction','rbf','BoxConstraint',1);
margin = 1;
x_start=min(X(:,1)) - margin;
x_end=max(X(:,1)) + margin;
y_start=min(X(:,2)) - margin;
y_end=max(X(:,2)) + margin;
d = 0.02;
[x1Grid,x2Grid] = meshgrid(x_start:d:x_end,...
y_start:d:y_end);
xGrid = [x1Grid(:),x2Grid(:)];
N = size(xGrid,1);
Scores = zeros(N,2);
[~,score] = predict(SVMModel,xGrid);
[~,maxScore] = max(score,[],2);
%% Plot Graph
figure
gscatter(xGrid(:,1),xGrid(:,2),maxScore, [0.5 0.1 0.5; 0.1 0.5 0.5]);
hold on
gscatter(X(:,1),X(:,2),Y);
title('{\bf SVM}');
xlabel('x_1');
ylabel('x_2');
axis tight
svInd = SVMModel.IsSupportVector;
plot(X(svInd,1),X(svInd,2),'yo','MarkerSize',10)
hold off
0 commentaires
Réponses (1)
Rajani Mishra
le 16 Avr 2020
To understand how well or bad svm classification is performing calculate loss error, you can use loss function for the same. Refer to this link for learning about it.
Also you can try to optimize result of svm classifier. Refer to this link for more information : https://www.mathworks.com/help/stats/optimize-an-svm-classifier-fit-using-bayesian-optimization.html
Hope this helps!
0 commentaires
Voir également
Catégories
En savoir plus sur Statistics and Machine Learning Toolbox dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!