2DOF (ODE) response in MATLAB

17 vues (au cours des 30 derniers jours)
Faraz Vossoughian
Faraz Vossoughian le 12 Avr 2020
Commenté : Ameer Hamza le 15 Avr 2020
Im trying to find the response to the 2DOF for the following system,
initial conditions:
with the the following force applied to m2
I obtained the eqm, and tried to solve the ODE's using dsolove however the code doesnt work, Im not sure if this is because of wrong equation of motion, or Im taking the wrong approach. Also im wondering how to implement lsim command to solve this problem. I would appriciate the help. Thanks very much!
% finding force
F0=5;
T=1;
t=0:0.01:1;
F1=-F0*(t/T)+F0;
plot(t,F1)
hold on
t2=1:0.01:2
F2=F0*(t2/T)-F0;
plot(t2,F2)
hold on
t3=3:0.01:10
F3=F0;
F2=[F1,F2,F3];
hold off
% solving problem
syms x1(t) x2(t) F1 F2
m1=1;m2=2;c1=0;c2=0;k1=4;k2=4;k0=0.5;F1=F1;F2=F3;
eq1=F2==m2*(diff(x2,2)-diff(x1,2))+c2*(diff(x2,1)-diff(x1,1))+k2*(x2-x1);
eq2=F1==m1*diff(x1,2)+c1*diff(x1,1)+k1*x1;
Dx1=diff(x1);Dx2=diff(x2);
[X1(t),X2(t)]=dsolve([eq1 eq2],[x1(0)==0,Dx1(0)==0,x2(0)==0,Dx2(0)==0]);
t1=0:0.01:10;
Force=F2;
x1=subs(X2(t),{t,F2,F1},{t1,Force,0})
plot(t,X2(t));legend('X1(t)','X2(t)')

Réponses (1)

Ameer Hamza
Ameer Hamza le 12 Avr 2020
Modifié(e) : Ameer Hamza le 12 Avr 2020
In MATLAB, ode45 solver can be used to solve such equations numerically. Since you are solving these equations symbolically, the following correct the error in your code
% finding force
F0=5;
T=1;
t=0:0.01:1;
F1=-F0*(t/T)+F0;
plot(t,F1)
hold on
t2=1:0.01:2
F2=F0*(t2/T)-F0;
plot(t2,F2)
hold on
t3=3:0.01:10;
F3=F0;
F2=[F1,F2,F3];
hold off
% solving problem
syms x1(t) x2(t) F1 F2
m1=1;m2=2;c1=0;c2=0;k1=4;k2=4;k0=0.5;F1=F1;F2=F3;
eq1=F2==m2*(diff(x2,2)-diff(x1,2))+c2*(diff(x2,1)-diff(x1,1))+k2*(x2-x1);
eq2=F1==m1*diff(x1,2)+c1*diff(x1,1)+k1*x1;
Dx1=diff(x1);Dx2=diff(x2);
[X1(t),X2(t)]=dsolve([eq1 eq2],[x1(0)==0,Dx1(0)==0,x2(0)==0,Dx2(0)==0]);
t1=0:0.01:10;
Force=F2;
x1(t)=subs(X2(t),{t,F2,F1},{t1,Force,0});
x2(t)=subs(X2(t),{t,F2,F1},{t1,Force,0});
plot(t1,x1(t), t1,x2(t));legend('X1(t)','X2(t)')
But the two variables x1, and x2 overlap. I am not sure if this is correct solution. If you can give the mathematical form of your equations, I can see if your equations are correctly implemented.
  6 commentaires
Faraz Vossoughian
Faraz Vossoughian le 15 Avr 2020
Hey Amir, I ended up using ode45 to solve it. Im dealing with another ode probelm and i was wondering if I could have your feedback. Heres the link to that question https://www.mathworks.com/matlabcentral/answers/517960-sir-model-using-fsolve-and-euler-3pdf
Thanks a lot for the help.
Ameer Hamza
Ameer Hamza le 15 Avr 2020
Glad to be of help. If you can apply ode45, then you already have knowledge about the state-space representation of your system of ODE.

Connectez-vous pour commenter.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by