How to fit a common linear trend observed across multiple sensors?

11 vues (au cours des 30 derniers jours)
KAE
KAE le 15 Avr 2020
Commenté : KAE le 15 Avr 2020
Let's say I have 10 noisy sensors measuring temperature vs time, and I want to fit a linear trend which is common across all 10 sensors. How do I do this? (I believe I shouldn't average the sensors' values at each time step and then fit a trend to the resulting average, since that doesn't seem to be the same thing, but let me know if it is). Here is an example of the data I want to fit,
%% Make some fake noisy measurements
timeStep = 1:100; % Time step
for iSensor = 1:10 % Loop through sensors
% Dimensions of Temperature: nSensors x nTime
Temperature(iSensor,:) = (5 + rand(1,1))*timeStep + ...% Add noise to the true slope of 5
(rand(1, length(timeStep))-0.5)*100 + 7; % Add noise to the true offset of 7
end
figure;
plot(timeStep, Temperature);
xlabel('Time'); ylabel('Temperature'); title('Noisy Temperature');
All the usual linear regression functions (polyfit, fitlm, regress) seem to assume that Temperature is a vector with dimensions nTime x 1, rather than a matrix of nSensors x nTime.

Réponse acceptée

Rik
Rik le 15 Avr 2020
You can just replicate the x-values and linearize all your data:
%% Make some fake noisy measurements
timeStep = 1:100; % Time step
nSensors=10;
Temperature=zeros(nSensors,numel(timeStep));
for iSensor = 1:nSensors % Loop through sensors
% Dimensions of Temperature: nSensors x nTime
Temperature(iSensor,:) = (5 + rand(1,1))*timeStep + ...% Add noise to the true slope of 5
(rand(1, length(timeStep))-0.5)*100 + 7; % Add noise to the true offset of 7
end
figure(1),clf(1)
plot(timeStep, Temperature);
xlabel('Time'); ylabel('Temperature'); title('Noisy Temperature');
timeStep2=ones(size(Temperature)).*timeStep;%lazy repmat
p=polyfit(timeStep2(:),Temperature(:),1);
hold on
plot(timeStep,polyval(p,timeStep),'--k')
hold off
  1 commentaire
KAE
KAE le 15 Avr 2020
Great idea. This should be in the documentation, I think.

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Linear and Nonlinear Regression dans Help Center et File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by