MATLAB/NOMAD for global optima?
22 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Here comes my nonsmooth nonconvex MINLP, in fact this is a maximization problem. MATLAB/NOMAD from opti toolbox does not find the global optima? Do you have any idea why?
tnank you very much, basak
clc
fun=@(x)((((x(4)*(174.9333+23.3750*x(2)+3.6250*x(3)-19.0000*x(2)*x(3)-185)/(190-185))+...
((1-x(4))*(174.9333+23.3750*x(2)+3.6250*x(3)-19.0000*x(2)*x(3)-195)/(190-195)))*...
(x(5)*((154.8571+8.5000*x(1)+30.6250*x(2)+7.8750*x(3)-12.8571*x(1)^2+11.2500*x(1)*x(2)-185)/(190-185))+...
(1-x(5))*((154.8571+8.5000*x(1)+30.6250*x(2)+7.8750*x(3)-12.8571*x(1)^2+11.2500*x(1)*x(2)-195)/(190-195)))*...
(x(6)*((140.2333+ 5.3437*x(1)+18.2500*x(2)+19.5938*x(3)-170)/(185-170))+...
(1-x(6))*((140.2333+ 5.3437*x(1)+18.2500*x(2)+19.5938*x(3)-195)/(185-195))))^(1/3))
x0 = [1.0000 0.8629 0.5863 0 0 0]';
lb = [-1;-1;-1;0;0;0];
ub = [1;1;1;1;1;1];
xtype='CCCBBB';
opts=optiset('solver','nomad','display','iter','solverOpts',nomadset('direction_type','lt 2n'))
Opt=opti('fun',fun,'bounds',lb,ub,'xtype',xtype,'options',opts)
[x,fval,exitflag,info] = solve(Opt,x0)
2 commentaires
Walter Roberson
le 15 Sep 2022
Modifié(e) : Walter Roberson
le 15 Sep 2022
NOMAD appears to refer to the third party toolbox, one source of which is at https://github.com/jonathancurrie/OPTI
Note that third party toolboxes are not created by Mathworks, and volunteers here might not be familiar with them.
Réponses (2)
Abdolkarim Mohammadi
le 20 Juil 2020
Your problem is a bound-constrained problem with five decision variables. I think many solvers in the Global Optimization toolbox like GA and surrogate optimization can handle such problems efficiently.
4 commentaires
Walter Roberson
le 15 Sep 2022
NOMAD is third party code. The volunteers generally do not know anything about it.
I see that the third-party toolbox historically had a user forum. However, that appears to be closed now, as the toolbox is no longer being developed.
Walter Roberson
le 15 Sep 2022
Your function can return complex values. The ^(1/3) generates a complex result when the base expression is negative.
format long g
fun=@(x)((((x(4)*(174.9333+23.3750*x(2)+3.6250*x(3)-19.0000*x(2)*x(3)-185)/(190-185))+...
((1-x(4))*(174.9333+23.3750*x(2)+3.6250*x(3)-19.0000*x(2)*x(3)-195)/(190-195)))*...
(x(5)*((154.8571+8.5000*x(1)+30.6250*x(2)+7.8750*x(3)-12.8571*x(1)^2+11.2500*x(1)*x(2)-185)/(190-185))+...
(1-x(5))*((154.8571+8.5000*x(1)+30.6250*x(2)+7.8750*x(3)-12.8571*x(1)^2+11.2500*x(1)*x(2)-195)/(190-195)))*...
(x(6)*((140.2333+ 5.3437*x(1)+18.2500*x(2)+19.5938*x(3)-170)/(185-170))+...
(1-x(6))*((140.2333+ 5.3437*x(1)+18.2500*x(2)+19.5938*x(3)-195)/(185-195))))^(1/3))
x0 = [1.0000 0.8629 0.5863 0 0 0]';
lb = [-1;-1;-1;0;0;0];
ub = [1;1;1;1;1;1];
ga_opts = optimoptions('ga', 'HybridFcn', 'fmincon')
[ga_x, ga_fval, ga_exitflag, ga_info] = ga(fun, length(x0), [], [], [], [], lb, ub, [], ga_opts)
[fmc_x, fmc_fval, fmc_exitflag, fmc_info] = fmincon(fun, x0, [], [], [], [], lb, ub, [], [])
5 commentaires
Walter Roberson
le 15 Sep 2022
You can see from the below that if you permit continuous variables, then there are positions well within the bounds (not just right at the bounds) that produce complex results from the function. In my tests, roughly 45.3 % of all random configurations in-bounds produce complex results.
format long g
lb = [-1;-1;-1;0;0;0];
ub = [1;1;1;1;1;1];
N = 100;
M = length(lb);
trials = rand(M, N) .* (ub - lb) + lb;
fun=@(x)((((x(4)*(174.9333+23.3750*x(2)+3.6250*x(3)-19.0000*x(2)*x(3)-185)/(190-185))+...
((1-x(4))*(174.9333+23.3750*x(2)+3.6250*x(3)-19.0000*x(2)*x(3)-195)/(190-195)))*...
(x(5)*((154.8571+8.5000*x(1)+30.6250*x(2)+7.8750*x(3)-12.8571*x(1)^2+11.2500*x(1)*x(2)-185)/(190-185))+...
(1-x(5))*((154.8571+8.5000*x(1)+30.6250*x(2)+7.8750*x(3)-12.8571*x(1)^2+11.2500*x(1)*x(2)-195)/(190-195)))*...
(x(6)*((140.2333+ 5.3437*x(1)+18.2500*x(2)+19.5938*x(3)-170)/(185-170))+...
(1-x(6))*((140.2333+ 5.3437*x(1)+18.2500*x(2)+19.5938*x(3)-195)/(185-195))))^(1/3))
results = zeros(1, N);
for K = 1 : N
results(K) = fun(trials(:,K));
end
mask = imag(results) ~= 0;
tp = trials(:,mask).';
x1 = tp(:,1); x2 = tp(:,2); x3 = tp(:,3); x4 = tp(:,4); x5 = tp(:,5); x6 = tp(:,6);
fval = results(mask);
fval_real = real(fval(:)); fval_imag = imag(fval(:));
T = table(fval_real, fval_imag, x1, x2, x3, x4, x5, x6);
if height(T) == 0
fprintf('Excellent, %d trials produced no complex results!\n', N);
else
fprintf('Opps, %d trials produced %d complex results!\n', N, height(T));
T
end
Walter Roberson
le 15 Sep 2022
If you interpret the lb = 0 ub = 1 as being the locations of binary variables, and assume the -1 to 1 locations are continuous, then half of the random configurations lead to complex results.
format long g
lb = [-1;-1;-1;0;0;0];
ub = [1;1;1;1;1;1];
N = 1000;
M = length(lb);
trials = rand(M, N) .* (ub - lb) + lb;
trials(4:6, :) = randi([0 1], 3, N);
fun=@(x)((((x(4)*(174.9333+23.3750*x(2)+3.6250*x(3)-19.0000*x(2)*x(3)-185)/(190-185))+...
((1-x(4))*(174.9333+23.3750*x(2)+3.6250*x(3)-19.0000*x(2)*x(3)-195)/(190-195)))*...
(x(5)*((154.8571+8.5000*x(1)+30.6250*x(2)+7.8750*x(3)-12.8571*x(1)^2+11.2500*x(1)*x(2)-185)/(190-185))+...
(1-x(5))*((154.8571+8.5000*x(1)+30.6250*x(2)+7.8750*x(3)-12.8571*x(1)^2+11.2500*x(1)*x(2)-195)/(190-195)))*...
(x(6)*((140.2333+ 5.3437*x(1)+18.2500*x(2)+19.5938*x(3)-170)/(185-170))+...
(1-x(6))*((140.2333+ 5.3437*x(1)+18.2500*x(2)+19.5938*x(3)-195)/(185-195))))^(1/3))
results = zeros(1, N);
for K = 1 : N
results(K) = fun(trials(:,K));
end
mask = imag(results) ~= 0;
tp = trials(:,mask).';
x1 = tp(:,1); x2 = tp(:,2); x3 = tp(:,3); x4 = tp(:,4); x5 = tp(:,5); x6 = tp(:,6);
fval = results(mask);
fval_real = real(fval(:)); fval_imag = imag(fval(:));
T = table(fval_real, fval_imag, x1, x2, x3, x4, x5, x6);
if height(T) == 0
fprintf('Excellent, %d trials produced no complex results!\n', N);
else
fprintf('Opps, %d trials produced %d complex results!\n', N, height(T));
T
end
Voir également
Catégories
En savoir plus sur Get Started with Optimization Toolbox dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!