
How do I find curve of best fit or create one manually to fit?
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Ash Maxwell
le 28 Avr 2020
Modifié(e) : Ameer Hamza
le 28 Avr 2020
angle = [45,50,55,60,65,70,75,80,85]';
P = [55.51, 69.5, 78.07, 82.06, 81.81, 77.3, 68.12, 53.42, 31.59]';
scatter(angle, P, 'bx');
%Also I apparently don't have the cftool so I can't use that I'm afraid.
0 commentaires
Réponse acceptée
Ameer Hamza
le 28 Avr 2020
Modifié(e) : Ameer Hamza
le 28 Avr 2020
It looks like a parabols. If you have optimization toolbox, you can use lsqcurvefit to fit this equation (y=a*x^2+b*x+c) to the dataset.
angle = [45,50,55,60,65,70,75,80,85]';
P = [55.51, 69.5, 78.07, 82.06, 81.81, 77.3, 68.12, 53.42, 31.59]';
fun = @(a,b,c,angles) a*angles.^2 + b.*angles + c;
param_sol = lsqcurvefit(@(param, angles) fun(param(1),param(2),param(3),angles), rand(1,3), angle, P);
a_sol = param_sol(1);
b_sol = param_sol(2);
c_sol = param_sol(3);
plot(angle, P, 'bx', angle, fun(a_sol, b_sol, c_sol, angle), 'r-');

You can also do it without any toolbox. Following also fit a parabolic equation of form (y=a*x^2+b*x+c)
angle = [45,50,55,60,65,70,75,80,85]';
P = [55.51, 69.5, 78.07, 82.06, 81.81, 77.3, 68.12, 53.42, 31.59]';
X = [angle(:).^2 angle(:) ones(size(angle(:)))];
params = X\P(:);
P_estimated = X*params;
plot(angle, P, 'bx', angle, P_estimated, 'r-')
0 commentaires
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Get Started with Curve Fitting Toolbox dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!