教師なし学習のクラス​タリングを用いた画像​判別について

4 vues (au cours des 30 derniers jours)
Kaneko
Kaneko le 4 Mai 2020
Commenté : Kenta le 5 Mai 2020
自分が持っている画像を使って,教師なし学習の一つであるクラスタリングを行いたいと考えています。
クラスタリングのやり方について以下のページを見てみましたが、ここで使用されている,フィッシャーのアヤメのデータは測定値からクラスタリングをするものでした。
フォルダに入っている画像を入力して,判別した結果を出すようにしたいのですが,どのようにすればよろしいでしょうか。
よろしくお願いいたします。

Réponse acceptée

Kenta
Kenta le 4 Mai 2020
こんにちは、学習済みネットワークにより画像の特徴抽出を行い、画像をM×1の形に直し、それをk-meansアルゴリズムによりクラスタリングすればできます。
具体的には、
feature=squeeze(activations(net,augImds,'avg1'));
などによって、特徴抽出し、
C=kmeans(feature',numClass,"Start","plus");
などとすれば、kmeansアルゴリズムを実行できます。
その結果、ラベル情報を使わずに、画像群を特定の数を有するクラスタに割り当てることができます。
詳しい実装のコードは以下のリンクにあります。
  2 commentaires
Kaneko
Kaneko le 5 Mai 2020
回答ありがとうございます。コードを参考にして、やってみたいと思います。
Kenta
Kenta le 5 Mai 2020
はい、またわかりにくい箇所があればご指摘ください。よろしくお願いいたします。

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Statistics and Machine Learning Toolbox dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!