SOLVING nonlinear reaction diffusion heat equation
21 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Please matlab gurus, I need to solve this pde
How to i expreess this on matlab
ut = uxx + u - eu^2;
0 < x < 1; t > 0; e<<1
u(0,t) =0
u(1,t) =0
u(x,0) =x-x^3
where e is epislon.
e =.01
N = 16 and report the value of u(1=2; 1).
Provide a mesh plot of your numerical solution for
t [0; 1] and x = 0 : :01 : 1.
0 commentaires
Réponses (1)
Biswajit
le 21 Nov 2023
% Given parameters and conditions
e = 0.01; % epsilon
N = 16; % Number of spatial grid points
T = 1; % Total time
dx = 1 / N; % Grid spacing in x
dt = 0.001; % Time step size
x = 0:dx:1; % Spatial grid
t = 0:dt:T; % Time grid
% Initial condition
u0 = x - x.^3;
% Initialize the solution matrix
u = zeros(length(x), length(t));
u(:,1) = u0';
% Implement finite difference method
for n = 1:length(t)-1
for i = 2:length(x)-1
u(i,n+1) = u(i,n) + dt * (u(i+1,n) - 2*u(i,n) + u(i-1,n))/(dx^2) ...
+ dt * (u(i,n) - e*u(i,n)^2);
end
% Boundary conditions
u(1,n+1) = 0;
u(end,n+1) = 0;
end
% Calculate u(1/2, 1)
x_index = find(abs(x - 1/2) < eps);
u_12_1 = u(x_index, end);
disp(['Value of u(1/2, 1): ', num2str(u_12_1)]);
% Mesh plot of numerical solution
[X, T] = meshgrid(x, t);
figure;
mesh(X, T, u');
xlabel('x');
ylabel('t');
zlabel('u(x,t)');
title('Numerical Solution: u(x,t)');
Voir également
Catégories
En savoir plus sur Visualization dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!