how to obtain a smoother curve
2 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
hello everyone.
as you can see from the excel file i have 4 columns with data obtained in laboratory (time, x, y, z).
i wanted to obtain the velocity and so i did as you can see from the image:
subplot(2,2,1) - x derivate - diff(x)./diff(t)
subplot(2,2,2) - y derivate - diff(y)./diff(t)
subplot(2,2,3) - z derivate - diff(z)./diff(t)
-->my question is --> how can i obtain smoother curves?
thank you so much. any help would be nice.
0 commentaires
Réponse acceptée
Pedro Villena
le 31 Oct 2012
Modifié(e) : Pedro Villena
le 12 Nov 2012
data = xlsread('data.xlsx');
t = data(:,1);
x = data(:,2);
y = data(:,3);
z = data(:,4);
smoothOrder = 8; %%change the smooth order to fit better
t1 = t(1:end-smoothOrder);
t2 = t(smoothOrder+1:end);
x1 = x(1:end-smoothOrder);
x2 = x(smoothOrder+1:end);
y1 = y(1:end-smoothOrder);
y2 = y(smoothOrder+1:end);
z1 = z(1:end-smoothOrder);
z2 = z(smoothOrder+1:end);
dx = (x2-x1)./(t2-t1); %central difference (velocity)
dy = (y2-y1)./(t2-t1); %central difference (velocity)
dz = (z2-z1)./(t2-t1); %central difference (velocity)
tt = (t2+t1)./2;
tt1 = tt(1:end-smoothOrder);
tt2 = tt(smoothOrder+1:end);
dx1 = dx(1:end-smoothOrder);
dx2 = dx(smoothOrder+1:end);
dy1 = dy(1:end-smoothOrder);
dy2 = dy(smoothOrder+1:end);
dz1 = dz(1:end-smoothOrder);
dz2 = dz(smoothOrder+1:end);
ddx = (dx2-dx1)./(tt2-tt1); %central difference (acceleration)
ddy = (dy2-dy1)./(tt2-tt1); %central difference (acceleration)
ddz = (dz2-dz1)./(tt2-tt1); %central difference (acceleration)
ttt = (tt2+tt1)./2;
subplot(3,3,1), plot(t,x,'k'), title('x data');
axis([min(t) max(t) min(x) max(x)]);
subplot(3,3,2), plot(t,y,'k'), title('y data');
axis([min(t) max(t) min(y) max(y)]);
subplot(3,3,3), plot(t,z,'k'), title('z data');
axis([min(t) max(t) min(z) max(z)]);
subplot(3,3,4), plot(t(1:end-1),diff(x)./diff(t),'r.:',tt,dx,'b');
axis([min(t) max(t) min(dx) max(dx)]);
title('dx data'), legend('backward diff','central diff');
subplot(3,3,5), plot(t(1:end-1),diff(y)./diff(t),'r.:',tt,dy,'b');
axis([min(t) max(t) min(dy) max(dy)]);
title('dy data'), legend('backward diff','central diff');
subplot(3,3,6), plot(t(1:end-1),diff(z)./diff(t),'r.:',tt,dz,'b');
axis([min(t) max(t) min(dz) max(dz)]);
title('dz data'), legend('backward diff','central diff');
subplot(3,3,7), plot(t(1:end-2),diff(x,2)./diff(t,2),'r.:',ttt,ddx,'b');
axis([min(t) max(t) min(ddx) max(ddx)]);
title('d^2x data'), legend('backward diff','central diff');
subplot(3,3,8), plot(t(1:end-2),diff(y,2)./diff(t,2),'r.:',ttt,ddy,'b');
axis([min(t) max(t) min(ddy) max(ddy)]);
title('d^2y data'), legend('backward diff','central diff');
subplot(3,3,9), plot(t(1:end-2),diff(z,2)./diff(t,2),'r.:',ttt,ddz,'b');
axis([min(t) max(t) min(ddz) max(ddz)]);
title('d^2z data'), legend('backward diff','central diff');
0 commentaires
Plus de réponses (1)
Sean de Wolski
le 31 Oct 2012
If you have the Curve Fitting Toolbox, the standout function would be smooth()
doc smooth
Voir également
Catégories
En savoir plus sur Get Started with MATLAB dans Help Center et File Exchange
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!