How can I code this Newton-Raphson and Secant Methods?
8 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Umut Berkcan Karahan
le 10 Mai 2020
Commenté : Muhammad Raihan Ekaputra Idrisatria
le 2 Nov 2020
Determine the root of the given equation (3*x*e^x)-1=0 for x ∈ [0,1] using Newton-Raphson and Secant methods. Stop calculation after seven iterations. I've coded a code but I'm not sure it is right or not...
%f is non-linear function.
%fder is derivation of f.
%x0 is initial value of iteration.
%e is tolerance of f function.
%d is first condition tolerance value.
%y is error amount.
%max is maximum iteration number.
syms x
x0 = 0;
x1 = 1;
d = 0.000001;
e = 0.00001;
max = 7;
f = @(x) 3*x*exp(x)-1;
fder = @(x) 3*(exp(x)+exp(x))*x;
for iteration = 0:max
t = fder(x0); %to check the derivation is zero or not.
if abs(t)<e
disp('Derivation value is very close to zero, algorithm stops')
break
end
x1 = x0-(f(x0)/fder(x0));
error = abs(x1-x0);
odderror = 2*error/(abs(x1)+d);
x0 = x1;
y = f(x0);
if(error<d)||(odderror<d)||(abs(y)<e)
break
end
end
disp('Wanted root value')
x1
disp('Error amount')
y
disp('Iteration number')
iteration
1 commentaire
Muhammad Raihan Ekaputra Idrisatria
le 29 Oct 2020
Use this function that made by me https://www.mathworks.com/matlabcentral/fileexchange/81758-newton-raphson-secant-method
I mixed Newton-Raphson and backward euler to solve the derrivation using numeric method
Réponse acceptée
David Hill
le 10 Mai 2020
The basic code is as follows. You can do other checks as desired.Your code looked ok, except you don't need symbolic variables and your fder function was missing a ')'.
x=0;
f = @(x) 3*x.*exp(x)-1;
fder = @(x) 3*(exp(x)+exp(x).*x);
for k=1:7%newton method
x=x-f(x)/fder(x);
end
y=[0,1];
for k=1:7%secant method
z=y(2);
y(2)=y(2)-f(y(2))*diff(y)/diff(f(y));
y(1)=z;
end
2 commentaires
Muhammad Raihan Ekaputra Idrisatria
le 2 Nov 2020
better you add an if condition, if f(x0)=0 then x=x0. To avoid a division by 0
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Symbolic Math Toolbox dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!