How can I code this Newton-Raphson and Secant Methods?

8 vues (au cours des 30 derniers jours)
Umut Berkcan Karahan
Umut Berkcan Karahan le 10 Mai 2020
Determine the root of the given equation (3*x*e^x)-1=0 for x [0,1] using Newton-Raphson and Secant methods. Stop calculation after seven iterations. I've coded a code but I'm not sure it is right or not...
%f is non-linear function.
%fder is derivation of f.
%x0 is initial value of iteration.
%e is tolerance of f function.
%d is first condition tolerance value.
%y is error amount.
%max is maximum iteration number.
syms x
x0 = 0;
x1 = 1;
d = 0.000001;
e = 0.00001;
max = 7;
f = @(x) 3*x*exp(x)-1;
fder = @(x) 3*(exp(x)+exp(x))*x;
for iteration = 0:max
t = fder(x0); %to check the derivation is zero or not.
if abs(t)<e
disp('Derivation value is very close to zero, algorithm stops')
break
end
x1 = x0-(f(x0)/fder(x0));
error = abs(x1-x0);
odderror = 2*error/(abs(x1)+d);
x0 = x1;
y = f(x0);
if(error<d)||(odderror<d)||(abs(y)<e)
break
end
end
disp('Wanted root value')
x1
disp('Error amount')
y
disp('Iteration number')
iteration
  1 commentaire
Muhammad Raihan Ekaputra Idrisatria
I mixed Newton-Raphson and backward euler to solve the derrivation using numeric method

Connectez-vous pour commenter.

Réponse acceptée

David Hill
David Hill le 10 Mai 2020
The basic code is as follows. You can do other checks as desired.Your code looked ok, except you don't need symbolic variables and your fder function was missing a ')'.
x=0;
f = @(x) 3*x.*exp(x)-1;
fder = @(x) 3*(exp(x)+exp(x).*x);
for k=1:7%newton method
x=x-f(x)/fder(x);
end
y=[0,1];
for k=1:7%secant method
z=y(2);
y(2)=y(2)-f(y(2))*diff(y)/diff(f(y));
y(1)=z;
end
  2 commentaires
Umut Berkcan Karahan
Umut Berkcan Karahan le 10 Mai 2020
So thanks David.
Muhammad Raihan Ekaputra Idrisatria
better you add an if condition, if f(x0)=0 then x=x0. To avoid a division by 0

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Symbolic Math Toolbox dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by