workaround for handling a large number of variables in the objective function of lsqnonlin
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Abdelwahab Afifi
le 12 Mai 2020
Commenté : Abdelwahab Afifi
le 12 Mai 2020
I want to optimize my objective function
w0=zeros(m,1)
[w,resnorm] = lsqnonlin(@myfun,w0)
How can I dynamically define weights w(1) w(2) w(3) in my function to adapt any possible change in number of variables (m) as follow
function F = myfun(w)
global X % regression matrix of (nxm)
global Y % output vector (nx1)
F = Y - ( w(1)*X(:,1) + w(2)*X(:,2) + w(3)*X(:,3) + .. + w(m)*X(:,m) );
end
1 commentaire
Stephen23
le 12 Mai 2020
Note that the global variables should be replaced by function parameterization:
Réponse acceptée
Stephen23
le 12 Mai 2020
Modifié(e) : Stephen23
le 12 Mai 2020
>> X = rand(7,3);
>> w = rand(3,1);
>> w(1)*X(:,1) + w(2)*X(:,2) + w(3)*X(:,3) % what you do now
ans =
0.63892
0.43089
0.59637
0.89806
1.08999
0.98472
0.38443
>> X*w(:) % what you should do: matrix multiply
ans =
0.63892
0.43089
0.59637
0.89806
1.08999
0.98472
0.38443
3 commentaires
Stephen23
le 12 Mai 2020
Modifié(e) : Stephen23
le 12 Mai 2020
"I ask about defining the objective function (myfun) interms of large number of variables (w)"
And that is what I gave you. Matrix multiplcation neatly solves your problem of how to "...dynamically define weights w(1) w(2) w(3) in my function to adapt any possible change in number of variables (m)". You gave this verbose code
w(1)*X(:,1) + w(2)*X(:,2) + w(3)*X(:,3) + .. + w(m)*X(:,m)
which I simply replaced with one matrix multply
X*w(:)
giving exactly the same output as your code, and yet it also works for any m (thus answering your question). So far you have not actually stated why it would not work, nor given any counter-example. If it did not work as expected please show your exact input data and the expected output.
function F = myfun(w)
global X % regression matrix of (nxm)
global Y % output vector (nx1)
F = Y - X*w(:);
end
Note that the global variables should be replaced by function parameterization:
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Get Started with Optimization Toolbox dans Help Center et File Exchange
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!