Split Jacobian result into Matrix factors
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hello,
I'm using the symbolic toolbos to calculate the following Jacobian:
jacobian(A4,phi_)
where
A4 = - TLB*R*TLB2*w
with
The result of jacobian(A4,phi_) calculated by Matlab is
[wz*(r2 + psi*r5 - r8*theta) - wy*(r3 + psi*r6 - r9*theta), wy*(r8 + phi*r9 - psi*r7) - wz*(r1 - r9 + phi*r8 + psi*r4 - 2*r7*theta) + wx*(r3 + r7 + psi*r6 + psi*r8 - 2*r9*theta), - wz*(r6 - phi*r5 + r4*theta) - wy*(r5 - r1 + phi*r6 - 2*psi*r4 + r7*theta) - wx*(r2 + r4 + 2*psi*r5 - r6*theta - r8*theta)]
[ - wx*(r7 + psi*r8 - r9*theta) - wz*(r9 - r5 - 2*phi*r8 + psi*r2 + r7*theta) - wy*(r6 + r8 + 2*phi*r9 - psi*r3 - psi*r7),wx*(r6 + phi*r9 - psi*r3) - wz*(r4 + phi*r7 - psi*r1), wz*(r3 - phi*r2 + r1*theta) - wx*(r5 - r1 + phi*r8 - 2*psi*r2 + r3*theta) + wy*(r2 + r4 + phi*r3 + phi*r7 - 2*psi*r1)]
[ wx*(r4 + psi*r5 - r6*theta) - wy*(r9 - r5 - 2*phi*r6 + psi*r4 + r3*theta) + wz*(r6 + r8 - 2*phi*r5 + r2*theta + r4*theta), - wy*(r2 + phi*r3 - psi*r1) - wx*(r1 - r9 + phi*r6 + psi*r2 - 2*r3*theta) - wz*(r3 + r7 - phi*r2 - phi*r4 + 2*r1*theta), wy*(r7 - phi*r4 + r1*theta) - wx*(r8 - phi*r5 + r2*theta)]
which as you can see isn't very nice looking.
My question is if I can somehow turn this result into a product of my original matrices (if even mathematically possible),
for example ans = TLB*TLB2*R^T*inv(TLB*TLB2) or something like that.
Hope someone can help me here, thanks.
3 commentaires
David Goodmanson
le 27 Mai 2020
With fifteen independent variables sprinkled around by matrix multiplication, you can't expect the results to be sleek. And if you do have a better looking alternative expression such as the one you suggest (assuming it were true) then of course the end result has to be exactly the same as the one you have. So a better starting point doesn't help.
Réponses (0)
Voir également
Catégories
En savoir plus sur Debugging and Analysis dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!