log() much slower in parallel
9 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I run a MATLAB parallel job using the local scheduler to increase performance of the calculation. However, my function is much slower in the parallel job compared to its serial execution. By profiling I found out that some operations take much more time in parallel tasks (e.g. calling the built-in function log() about 6 times more). Any idea why it is slower?
A simplified example, let us have the following three functions:
function par_test()
Scheduler = findResource('scheduler', 'type', 'local');
Job = createJob(Scheduler);
createTask(Job, @par_func, 1, {});
submit(Job);
waitForState(Job, 'finished')
OutputArgCell = getAllOutputArguments(Job);
pInfoVector = [OutputArgCell{:, 1}];
mpiprofile('viewer', pInfoVector);
destroy(Job);
end
function pInfo = par_func()
mpiInit;
mpiprofile on
par_calc()
pInfo = mpiprofile('info');
end
function par_calc()
U = unifrnd(0, 1, 10000, 10000);
R = log(U);
end
Run
>> par_test
to execute par_calc in one parallel task and generate a profile report.
Run
>> profile on
>> par_calc
>> profile viewer
to execute par_calc serially and generate a profile report. Compare the execution time of log().
0 commentaires
Réponse acceptée
Walter Roberson
le 15 Nov 2012
log() is, I believe, normally automatically parallized over the number of available cores, even without the Parallel Computing Toolbox. If you have 6 cores then 1/6 of the work (approximately) would go to each core. But then when you run in parallel, each session only has access to a single core and cannot distribute the session's work.
0 commentaires
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur MATLAB Parallel Server dans Help Center et File Exchange
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!