How to fit the data with 2 term power law function?
6 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
peipei feng
le 1 Juin 2020
Commenté : peipei feng
le 2 Juin 2020
Hi there,
I have the followig data and I want to fit them in the form of z = r^a * v^b.
I tried to obtain log values of the function: log(z) =a*log(r)+b*log(v), but I'm confused as there are so many vectors.
r = [4.242640687119285e-06,5.656854249492381e-06,7.071067811865476e-06,8.485281374238570e-06,9.899494936611665e-06,1.131370849898476e-05,1.272792206135786e-05];
v = [0.3656,0.6093,0.9748,1.2185];
z = [2.20075780727420 2.34800174967587 2.40633263085150 2.46928643488236 2.55551444168423 2.66309682650254 2.78591291730793
1.20828256541234 1.57243262679317 1.78594063849408 1.94976208027465 2.10251979263655 2.25584172701771 2.41163339237766
0.472116287092821 0.855613921769617 1.14739856522263 1.38120431719641 1.58720801177653 1.78025160940097 1.96628391586011
0.243938638287455 0.563375613060710 0.851155979561504 1.09774989977420 1.31858268912292 1.52483525677172 1.72202346894929
];
the plot is also attached, where different curves are from different v values.
Réponse acceptée
Ameer Hamza
le 1 Juin 2020
Modifié(e) : Ameer Hamza
le 2 Juin 2020
taking log() of the equation make it very easy to find the parameter (because the equation is linear in term of a and b). Try the following code
r = [4.242640687119285e-06,5.656854249492381e-06,7.071067811865476e-06,8.485281374238570e-06,9.899494936611665e-06,1.131370849898476e-05,1.272792206135786e-05];
v = [0.3656,0.6093,0.9748,1.2185];
z = [2.20075780727420 2.34800174967587 2.40633263085150 2.46928643488236 2.55551444168423 2.66309682650254 2.78591291730793
1.20828256541234 1.57243262679317 1.78594063849408 1.94976208027465 2.10251979263655 2.25584172701771 2.41163339237766
0.472116287092821 0.855613921769617 1.14739856522263 1.38120431719641 1.58720801177653 1.78025160940097 1.96628391586011
0.243938638287455 0.563375613060710 0.851155979561504 1.09774989977420 1.31858268912292 1.52483525677172 1.72202346894929
];
a = zeros(1, 4);
b = zeros(1, 4);
for i=1:numel(a)
V = repmat(v(i), size(r));
Z = log(z(i, :).');
X = [log(r.') log(V.')];
sol = X\Z;
a(i) = sol(1);
b(i) = sol(2);
end
figure;
axes();
hold on
for i=1:numel(v)
z_est = r.^a(i).*v(i).^b(i);
plot(r, z(i,:), '+--', 'DisplayName', ['v = ' num2str(v(i)) ' real']);
plot(r, z_est, 'DisplayName', ['v = ' num2str(v(i)) ' est']);
end
legend('Location', 'best');
5 commentaires
Ameer Hamza
le 2 Juin 2020
In that case, the original solution was correct. As you can see, the value of a and b vary very much to fit these lines, so it might not be possible to get a good fit with single 'a' and 'b'.
Here is the original code for reference
r = [4.242640687119285e-06,5.656854249492381e-06,7.071067811865476e-06,8.485281374238570e-06,9.899494936611665e-06,1.131370849898476e-05,1.272792206135786e-05];
v = [0.3656,0.6093,0.9748,1.2185];
z = [2.20075780727420 2.34800174967587 2.40633263085150 2.46928643488236 2.55551444168423 2.66309682650254 2.78591291730793
1.20828256541234 1.57243262679317 1.78594063849408 1.94976208027465 2.10251979263655 2.25584172701771 2.41163339237766
0.472116287092821 0.855613921769617 1.14739856522263 1.38120431719641 1.58720801177653 1.78025160940097 1.96628391586011
0.243938638287455 0.563375613060710 0.851155979561504 1.09774989977420 1.31858268912292 1.52483525677172 1.72202346894929
];
[V, R] = ndgrid(v, r);
Y = log(z(:));
X = [log(R(:)) log(V(:))];
sol = X\Y; % least square solution
a = sol(1);
b = sol(2);
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Interpolation dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!