Matrix multiplication, matrix with variables

6 vues (au cours des 30 derniers jours)
GH
GH le 4 Juin 2020
Modifié(e) : Rik le 4 Juin 2020
Hi everyone,
how can I multiply several matrices, if in them there are at least one but maximum 3 variables. (The matrices are actually only two specifc kinds, a tranfer and a refractive matrix one after ithe other.
(I have 2017a version so the symbolic toolbox doesn't work yet)
  1 commentaire
Rik
Rik le 4 Juin 2020
Can you provide a bit more detailed explanation? What is your input? What is your desired output?
And what have you tried so far?

Connectez-vous pour commenter.

Réponse acceptée

Rik
Rik le 4 Juin 2020
Modifié(e) : Rik le 4 Juin 2020
If this code works, why not use this?
Fin=T_vit*R_lens_post*T_lens*R_lens_ant*T_aqueous*R_cor_post*T_cornea*R_cor_ant;
You also don't need to hard-code all your values:
%Accommodation in Diopters
Acc = 0;
%Radius in mm
cornea_antR = 7.8*10^-3;
cornea_postR = 6.5*10^-3;
lens_ant = 12.0*10^-3 + 0.4*Acc;
lens_post = -5.22*10^-3 + 0.2*Acc;
retina = -13.4*10^-3;
R = table(cornea_antR, cornea_postR, lens_ant, lens_post, retina);
%Index of Refraction
n_cornea = 1.377;
n_aqueous = 1.377;
n_lens = 1.42 + 0.0026*Acc - 0.00022 * Acc^2;
n_vitreous = 1.336;
n_air = 1; %you forgot this one here
N = table(n_cornea, n_aqueous, n_lens, n_vitreous);
%Thickness in mm - distance to the next surface
d_cornea = 0.55*10^-3;
d_aqueous = 2.97*10^-3 - 0.04 * Acc;
d_lens = 3.77*10^-3 + 0.04 * Acc;
d_vitreous = 16.713*10^-3;
D = table(d_cornea, d_aqueous, d_lens, d_vitreous);
%The system:(Arizona eye model ray matrices)
%Free space -> Ref_Cornea_Ant -> Trans_Cornea -> Ref_Cornea_Post ->
%Trans_Aq -> Ref_Lens_ant -> Trans_Lens -> Ref_Lens_Post -> Trans_vitreous
% % (in general)the Transfer matrix indexes [A B; C D]
% A = 1;
% B = d;
% C = 0;
% D = 1;
% % (in general)the Refractive matrix indexes [A B; C D]
% A = 1;
% B = 0;
% C = - (n_2 - n_1)/ (n_2 * R);
% D = (n_1/ n_2);
% T = [1 D; 0 1];
% R = [1 0; - (n_2 - n_1)/ (n_2 * R) (n_1/ n_2) ];
% d = d_vitreous = 16.713*10^-3 m
T_vit = [1 d_vitreous; 0 1];
% n_1 = n_lens = 1.42; n_2 = n_vitreous = 1.336 ; R = lens_post = -5.22*10^-3 m
% - (n_2 - n_1)/ (n_2 * R) = -(1.336 - 1.42 / (1.336*-5.22*10^-3))
% (n_1/ n_2) = 1.42 / 1.336
R_lens_post = [1 0; (-(n_vitreous - n_lens / (n_vitreous*lens_post))) (n_lens / n_vitreous) ];
% d = d_lens = 3.77*10^-3 m
T_lens = [1 d_lens; 0 1];
% n_1 = n_aqueous = 1.377; n_2 = n_lens = 1.42 ; R = lens_ant = 12.0*10^-3m
% - (n_2 - n_1)/ (n_2 * R) = -(1.42 - 1.377 / (1.42 *12.0*10^-3))
% (n_1/ n_2) = (1.377/ 1.42)
R_lens_ant = [1 0; (-(n_lens - n_aqueous / (n_lens *lens_ant))) (n_aqueous/ n_lens) ];
% d = d_aqueous = 2.97*10^-3 m
T_aqueous = [1 d_aqueous; 0 1];
% n_1 = n_cornea = 1.377; ; n_2 = n_aqueous = 1.377; R = cornea_postR = 6.5*10^-3
% - (n_2 - n_1)/ (n_2 * R) = -(1.377 - 1.377 / (1.377 *6.5*10^-3))
% (n_1/ n_2) = (1.377/ 1.377)
R_cor_post = [1 0; (-(n_aqueous - n_cornea / (n_aqueous *cornea_postR))) (n_cornea/n_aqueous) ];
% d = d_aqueous = 2.97*10^-3 m
T_cornea = [1 d_aqueous ; 0 1];
% n_1 = n_air = 1; ; n_2 = n_cornea= 1.377; R = cornea_antR = 7.8*10^-3
% - (n_2 - n_1)/ (n_2 * R) = -(1.377 - 1 / (1.377 *6.5*10^-3))
% (n_1/ n_2) = (1/ 1.377)
R_cor_ant = [1 0; (-(n_cornea - n_air / (n_cornea *cornea_antR))) (n_air/n_cornea)];
Fin=T_vit*R_lens_post*T_lens*R_lens_ant*T_aqueous*R_cor_post*T_cornea*R_cor_ant;
  2 commentaires
GH
GH le 4 Juin 2020
You are absolutly right, thank you very very much.
Rik
Rik le 4 Juin 2020
It would probably help with readability if you used a few anonymous functions:
function wrap_in_a_function_to_give_mlint_a_chance_to_warn_about_unused_variables
%Accommodation in Diopters
Acc = 0;
%Radius in mm
cornea_antR = 7.8*10^-3;
cornea_postR = 6.5*10^-3;
lens_ant = 12.0*10^-3 + 0.4*Acc;
lens_post = -5.22*10^-3 + 0.2*Acc;
retina = -13.4*10^-3; %unused variable
%Index of Refraction
n_cornea = 1.377;
n_aqueous = 1.377;
n_lens = 1.42 + 0.0026*Acc - 0.00022 * Acc^2;
n_vitreous = 1.336;
n_air = 1; %you forgot this one here
%Thickness in mm - distance to the next surface
d_cornea = 0.55*10^-3; %unused variable
d_aqueous = 2.97*10^-3 - 0.04 * Acc;
d_lens = 3.77*10^-3 + 0.04 * Acc;
d_vitreous = 16.713*10^-3;
%The system:(Arizona eye model ray matrices)
%Free space -> Ref_Cornea_Ant -> Trans_Cornea -> Ref_Cornea_Post ->
%Trans_Aq -> Ref_Lens_ant -> Trans_Lens -> Ref_Lens_Post -> Trans_vitreous
% (in general)the Transfer matrix indexes
% (in general)the Refractive matrix indexes
T = @(D) [1 D; 0 1];
R = @(n_1,n_2,r) [1 0; - (n_2 - n_1)/ (n_2 * r) (n_1/ n_2) ];
Fin=T(d_vitreous)*R(n_aqueous,n_vitreous,lens_post)* ...
T(d_lens)*R(n_aqueous,n_lens,lens_ant)* ...
T(d_aqueous)*R(n_cornea,n_aqueous,cornea_postR)* ...
T(d_aqueous)*R(n_air,n_cornea,cornea_antR);
end

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur System Composer dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by