Phase portrait of a 2 dimensional system that converges to a unit circle

8 vues (au cours des 30 derniers jours)
Penglin Cai
Penglin Cai le 5 Juin 2020
Commenté : Chen le 21 Oct 2024
The dynamical system contains two ODES:
dxdt=(1-(x.^2+y.^2)).*x-3.*y.*(x.^2+y.^2);
dydt=(1-(x.^2+y.^2)).*y+3.*x.*(x.^2+y.^2);
where :
x(t)=cos(3*t);
y(t)=sin(3*t);
This system has a unstable solution: x(t)=y(t)=0.
I want to produce a phase portrait of this system which will look like this:
Please help me. I do not know what code to use in order to produce this plot. The aatachment is the question. Thank you for the help!!!!
  3 commentaires
Penglin Cai
Penglin Cai le 6 Juin 2020
Yes, the picture below is the original question, l really do not know what command to use in order to plot this graph. Thank you for your help.
Chen
Chen le 21 Oct 2024
Hi, I've been studying coupled oscillators, can you tell me which book this is from?

Connectez-vous pour commenter.

Réponse acceptée

Ameer Hamza
Ameer Hamza le 6 Juin 2020
Modifié(e) : Ameer Hamza le 6 Juin 2020
try this
dx_dt = @(x,y) (1-(x.^2+y.^2)).*x-3.*y.*(x.^2+y.^2);
dy_dt = @(x,y) (1-(x.^2+y.^2)).*y+3.*x.*(x.^2+y.^2);
[x, y] = meshgrid(-2:0.02:2, -2:0.02:2);
dx = dx_dt(x, y);
dy = dy_dt(x, y);
streamslice(x, y, dx, dy);
axis tight
axis equal
hold on
fplot(@(t) cos(3*t), @(t) sin(3*t), [0, 2*pi/3], 'Color', 'r', 'LineWidth', 2)

Plus de réponses (0)

Catégories

En savoir plus sur Mathematics dans Help Center et File Exchange

Produits


Version

R2019b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by