NaN confidence intervals for random effects generalized mixed effect model fitglme()
7 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hi,
I use the following line to fit a generalized linear mixed effect model on my data:
glme = fitglme(tbl, 'error ~ 1 + var1*var2 + (1+ var1*var2 | subject)', ...
'Distribution','Binomial','Link','logit','FitMethod','Laplace',...
'DummyVarCoding','effects')
Here is the results:
glme =
Generalized linear mixed-effects model fit by ML
Model information:
Number of observations 125388
Fixed effects coefficients 4
Random effects coefficients 72
Covariance parameters 10
Distribution Binomial
Link Logit
FitMethod Laplace
Formula:
error ~ 1 + va1*var2 + (1 + var1*var2 | subject)
Model fit statistics:
AIC BIC LogLikelihood Deviance
67909 68045 -33941 67881
Fixed effects coefficients (95% CIs):
Name Estimate SE tStat DF pValue Lower Upper
{'(Intercept)'} 1.4242 0.24318 5.8564 1.2538e+05 4.7419e-09 0.94755 1.9008
{'var1' } 0.071231 0.0055598 12.812 1.2538e+05 1.4861e-37 0.060334 0.082128
{'var2' } -0.12883 0.013019 -9.8958 1.2538e+05 4.4287e-23 -0.15435 -0.10332
{'var1:var2' } 0.0023277 0.00042286 5.5046 1.2538e+05 3.7072e-08 0.0014989 0.0031565
Random effects covariance parameters:
Group: subject (18 Levels)
Name1 Name2 Type Estimate
{'(Intercept)'} {'(Intercept)'} {'std' } 1.0232
{'var1' } {'(Intercept)'} {'corr'} 0.38145
{'var2' } {'(Intercept)'} {'corr'} -0.43246
{'var1:var2' } {'(Intercept)'} {'corr'} 0.25889
{'var1' } {'var1' } {'std' } 0.019984
{'var2' } {'var1' } {'corr'} -0.15137
{'var1:var2' } {'var1' } {'corr'} 0.63492
{'var2' } {'var2' } {'std' } 0.052801
{'var1:var2' } {'var2' } {'corr'} 0.59288
{'var1:var2' } {'var1:var2' } {'std' } 0.0013593
Group: Error
Name Estimate
{'sqrt(Dispersion)'} 1
Then I use the following to get 95% confidence intervals for random effects:
[psi,dispersion,stats] = covarianceParameters(glme);
When I look at the confidence intervals, I have some NaN values:
stats{1}
ans =
Covariance Type: FullCholesky
Group Name1 Name2 Type Estimate Lower Upper
subject {'(Intercept)'} {'(Intercept)'} {'std' } 1.0232 0.74346 1.4083
subject {'var1' } {'(Intercept)'} {'corr'} 0.38145 NaN NaN
subject {'var2' } {'(Intercept)'} {'corr'} -0.43246 -0.44369 -0.42108
subject {'var1:var2' } {'(Intercept)'} {'corr'} 0.25889 0.10277 0.40256
subject {'var1' } {'var1' } {'std' } 0.019984 0.013642 0.029275
subject {'var2' } {'var1' } {'corr'} -0.15137 NaN NaN
subject {'var1:var2' } {'var1' } {'corr'} 0.63492 0.52744 0.72239
subject {'var2' } {'var2' } {'std' } 0.052801 0.036326 0.076748
subject {'var1:var2' } {'var2' } {'corr'} 0.59288 NaN NaN
subject {'var1:var2' } {'var1:var2' } {'std' } 0.0013593 0.00073738 0.0025057
Any idea on why I get NaN values for some of the 'corr' parameters?
Thank you.
0 commentaires
Réponses (1)
Paul
le 5 Août 2020
I feel this happens often when a model is too complex for the number of supplied datapoints, i.e. it happens because there's not enough data to produce those estimates. I often end up not including interaction effects in the random effects for that reason.
0 commentaires
Voir également
Catégories
En savoir plus sur Dimensionality Reduction and Feature Extraction dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!