How can I find the Power spectral density of a filtered Noise?
2 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I have this following code of generating noise and filtering it.. However I ailrd to plot its PSD of filtered Noise, as mentioned in coments?
N=2^10;
time=1:1:N;
time=time*1e-3;
time=time/N;
size(time)
bandwidth=100e3;
irn=10e-9;
plotting=1;
noisebw=(1/(max(time)/length(time)) )/2;
%%% SENSOR DATA
ws=(noisebw)/bandwidth;
Wn=1/ws;
[b,a] = butter(2,Wn,'low');
VN1=irn*sqrt(bandwidth);
VN2=sqrt(ws);
noise1=VN1*randn(size(time));
noise2=filter(b,a,noise1);
noise3=VN2*noise2; % filtered Noise
if plotting
figure(100);
plot(time,noise1,'-k','Linewidth',2);
hold on;
plot(time,noise2,'-y','Linewidth',2);
plot(time,noise3,'-m','Linewidth',2);
grid on;
legend('noise high bw','filtered','noise low bw');
title('noise source function outputs');
end
0 commentaires
Réponses (1)
Ameer Hamza
le 6 Juin 2020
Modifié(e) : Ameer Hamza
le 6 Juin 2020
This example show how to plot PSD using FFT: https://www.mathworks.com/help/signal/ug/power-spectral-density-estimates-using-fft.html
0 commentaires
Voir également
Catégories
En savoir plus sur Parametric Spectral Estimation dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!