How to solve a second order non-homogeneous equation using Euler's approximation
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Gibby Sauce
le 7 Juin 2020
Modifié(e) : Ameer Hamza
le 7 Juin 2020
I'm able to approximate a the following homogenous differential equation n''+n'+2n=0, n(0)=5, n'(0)=1 using:
%Defining functions
first=@(n,x,t) x;
second=@(n,x,t) -x-2*n;
%step size
T=.05;
%max t value
tf=10;
%Initial conditions
t(1)=0;
n(1)=5;
n2(1)=1;
%euler approximation
for i=1:(tf/T)
t(i+1)=t(i)+T;
n(i+1)=n(i)+T*first(n(i),n2(i)+t(i));
n2(i+1)=n2(i)+T*second(n(i),n2(i)+t(i));
end
plot(t,n)
However, how should I edit the code above to solve a non-homogenous variation n''+n'+2n=cos(t), with the same initial conditions? Thank you.
0 commentaires
Réponse acceptée
Ameer Hamza
le 7 Juin 2020
Modifié(e) : Ameer Hamza
le 7 Juin 2020
First, there is a mistake in your equation of Euler method
n(i+1)=n(i)+T*first(n(i),n2(i),t(i)); % there should be a comma between n2(i) and t(i)
n2(i+1)=n2(i)+T*second(n(i),n2(i),t(i)); % there should be a comma between n2(i) and t(i)
You can use cos(t) as input by changing the function 'second'
second=@(n,x,t) -x-2*n+cos(t);
0 commentaires
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Numerical Integration and Differential Equations dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!