How can I solve & this 2nd order differential equation?
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
% x = x''
% y = x'
% z = x
% Conditions
f = 50:1:200; % Frequency span (Hz)
for f = 50:1:200
Equation = 50x - 100y - 25z == -1(f * 2 * pi);
plot(f, Equation)
hold on
end
0 commentaires
Réponses (1)
Ameer Hamza
le 12 Juin 2020
Modifié(e) : Ameer Hamza
le 12 Juin 2020
This shows how to solve this ODE for all values of 'f', and plot the solution as a surf plot
f = 50:1:200;
t = linspace(0, 10, 1000); % solve the equation for t in [0, 10]
ic = [0; 0]; % initial condition
Y = zeros(numel(f), numel(t));
for i = 1:numel(f)
[~, y] = ode45(@(t, x) odeFun(t, x, f(i)), t, ic);
Y(i, :) = y(:, 1);
end
surf(t, f, Y);
shading interp
xlabel('t');
ylabel('f');
zlabel('x');
function dxdt = odeFun(t, x, f)
dxdt = zeros(2, 1);
dxdt(1) = x(2);
dxdt(2) = 1/50*(100*x(2) + 25*x(1) - 1*2*pi*f);
end
Also see this example: https://www.mathworks.com/help/matlab/ref/ode45.html#bu3uj8b. It shows how to convert the 2nd-order ODE into a system of 2 first-order ODEs.
0 commentaires
Voir également
Catégories
En savoir plus sur Ordinary Differential Equations dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!