Is a LSTM parameter to sequence regression possible?
10 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hello,
What happens if I have for example 30 different input parameters in a dataset and a corresponding signal as output and I want to predict this signal?
E.g. features are [X1, X2, X3, .... X30] and the label is a time dependent signal of length n [X31(t_1) X(31(t_2) X(31(t_3) .... X31(t_n)]
layers = [ ...
fullyConnectedLayer(30)
lstmLayer(numHiddenUnits,'OutputMode','sequence')
fullyConnectedLayer(n)
regressionLayer];
This did not work for me so far as I think there is a problem with the input layer?
Can someone help?
0 commentaires
Réponses (1)
Divya Gaddipati
le 23 Juin 2020
For a sequence input, you can use sequenceInputLayer.
sequenceInputLayer(featureDimension)
For more informatiom on sequenceInputLayer, refer to the following link:
Here's an example on Sequence-to-Sequence regression:
0 commentaires
Voir également
Catégories
En savoir plus sur Deep Learning Toolbox dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!