Calculating double integral of two variable

37 vues (au cours des 30 derniers jours)
Ismael Gilles Durand
Ismael Gilles Durand le 19 Juin 2020
I am having some issues calculation a double integral with two variable. my function F= {{sinc^2(X)sinc^2(Y)} *{sin^2(phi)+cos^2(theta)cos^2(phi)}}(sin(theta)).
I define X=(pi/2).*sin(theta).*cos(phi) and Y=(pi/2).*sin(theta).*sin(phi); and theta=[0 pi/2]; phi=[0 2*pi].
So, I have started
syms X Y theta phi
theta=linspace(0,pi/2);
phi=linspace(0,2*pi);
X=(pi/2).*sin(theta).*cos(phi);
Y=(pi/2).*sin(theta).*sin(phi);
func1=(sinc(X/pi).*sinc(Y/pi)).^2;
func2={(sin(theta))^2}+{cos(theta)cos(phi)}^2;
func=func1*func2;
func3=sin(theta);
Function1=vpa(int(func,0,2*pi),5)*vpa(int(func3,0,pi/2),5)
But I have also tried to rewrite
syms X Y theta phi
X=(pi/2).*sin(theta).*cos(phi);
Y=(pi/2).*sin(theta).*sin(phi);
Function1=@(theta,phi) ((sinc(X/pi).*sinc(Y/pi))^2 *((sin(phi))^2+(cos(theta)*cos(phi))^2))*(sin(theta));
E=integral2(Function1,0,pi/2,0,2*pi)

Réponses (1)

Devineni Aslesha
Devineni Aslesha le 22 Juin 2020
Modifié(e) : Devineni Aslesha le 22 Juin 2020
Hi Ismael,
To calculate the double integral of a two variable function, integral2 accepts only numeric variables. So, the entire function with two variable is defined as a single inline executable expression (anonymous function handles) as shown below.
Function1 = @(theta,phi) (((sinc((pi/2).*sin(theta).*cos(phi)).*sinc((pi/2).*sin(theta).*sin(phi))).^2).*((sin(phi)).^2+(cos(theta).*cos(phi)).^2)).*(sin(theta));
E = integral2(Function1,0,pi/2,0,2*pi)
For more information, refer the following link
  2 commentaires
madhan ravi
madhan ravi le 22 Juin 2020
The first statement contradicts the fact that int(...) with two calls exist if there’s an explicit solution.
Devineni Aslesha
Devineni Aslesha le 22 Juin 2020
Modifié(e) : Devineni Aslesha le 22 Juin 2020
int can accept both numeric and symbolic variables, whereas integral2 accepts only numeric variables as integral2 solves the integral numerically. Also, thanks for pointing that out, I can edit the answer specific to integral2.

Connectez-vous pour commenter.

Catégories

En savoir plus sur Mathematics dans Help Center et File Exchange

Produits


Version

R2019a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by