How can the center be determined by the Kmeans method?
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Ansam Nazar
le 24 Juin 2020
Réponse apportée : Aakash Mehta
le 24 Juin 2020
Hello
I am trying to use the Kmeans algorithm of the classification process to separate the diseases in the rays from the normal, but every time the colors resulting from the Kmeans process change. I want to know how I can confirm the colors resulting from each implementation so that each color is specific to a particular class in the xray.
indexes = kmeans(grayImage(:), numberOfClasses);
0 commentaires
Réponse acceptée
KSSV
le 24 Juin 2020
[idx,C,D] = kmeans(grayImge(:),numberOfclasses) ;
C is your cneter.
Read about kmeans. You can your center along with the function. The output is random..the classe indices change for every run.
Plus de réponses (1)
Aakash Mehta
le 24 Juin 2020
Due to the random starting value of the kmeans algorithm you are getting the different results with each implementation.
In order to get the results closer in each implementation,
- Use the 'Start' property of kmeans algorithm. here, you can speecify the start points for your algorithm.so, each time kmeans algorithm starts from those points.
- Also increase the no of iterations using the 'MaxIter' property.
0 commentaires
Voir également
Catégories
En savoir plus sur Statistics and Machine Learning Toolbox dans Help Center et File Exchange
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!