Solving second order PDE
23 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Lotuny Lee
le 26 Juin 2020
Modifié(e) : Lotuny Lee
le 27 Juin 2020
Hi, I am trying to solve the following pde with initial condition CA(0,r)=0 and boundary conditions CA(t,0)=F(t) and CA(t,5)=0.
, where D_A and gamma_A are known constants.
I tried using pdepe but was told that left boundary condition would be ignored when m=1 (cylindrical symmetry).
Then I tried discretizing space variable r before using ode15s, but was confused about how to construct the equation exactly.
Can anybody help?
2 commentaires
Réponse acceptée
Bill Greene
le 27 Juin 2020
Modifié(e) : Bill Greene
le 27 Juin 2020
The reason that pdepe imposes a boundary condition of the flux equal zero at the
center is that this is required for the problem to be mathematically well-posed.
Imposing a prescribed temperature at the center would require that the flux go to
infinity there.
An easy way to understand this is to solve the problem with the left end a small distance
from the center and with a fine mesh. I have attached a short script below that shows this.
function matlabAnswers_6_27_2020
r0=1e-6;
x = linspace(r0,1,1000);
tf=1;
t = linspace(0,tf,40);
pdeFunc = @(x,t,u,DuDx) heatpde(x,t,u,DuDx);
icFunc = @(x) heatic(x);
bcFunc = @(xl,ul,xr,ur,t) heatbcDirichlet(xl,ul,xr,ur,t);
m=1;
sol = pdepe(m, pdeFunc,icFunc,bcFunc,x,t);
figure; plot(t, sol(:,end)); grid on; title 'Temperature at outer surface'
figure; plot(t, sol(:,1)); grid on; title 'Temperature at center'
figure; plot(x, sol(end,:)); grid; title 'Temperature at final time'
end
function [c,f,s] = heatpde(x,t,u,DuDx)
c = 1;
f = DuDx;
s = 0;
end
function u0 = heatic(x)
u0 = 0;
end
function [pl,ql,pr,qr] = heatbcDirichlet(xl,ul,xr,ur,t)
pl = ul-1;
ql = 0;
pr = 0;
qr = 1;
end
Plus de réponses (1)
J. Alex Lee
le 27 Juin 2020
Does this help: https://www.mathworks.com/help/matlab/ref/pdepe.html
I believe that pdepe is available with base matlab.
It appeas to be able to do the space discretization automatically for you if you
Voir également
Catégories
En savoir plus sur PDE Solvers dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!