How to use cross validation/ leave one out in algorithm
61 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
How can I use cross validation/Leave one out in following example https://in.mathworks.com/help/deeplearning/ug/train-stacked-autoencoders-for-image-classification.html
0 commentaires
Réponses (1)
Pranav Verma
le 12 Août 2020
Hi Chhavi,
The cvpartition(group,'KFold',k) function with k=n creates a random partition for leave-one-out cross-validation on n observations. Below example demonstrates the aforementioned function,
load('fisheriris');
CVO = cvpartition(species,'k',150); %number of observations 'n' = 150
err = zeros(CVO.NumTestSets,1);
for i = 1:CVO.NumTestSets
trIdx = CVO.training(i);
teIdx = CVO.test(i);
ytest = classify(meas(teIdx,:),meas(trIdx,:),...
species(trIdx,:));
err(i) = sum(~strcmp(ytest,species(teIdx)));
end
cvErr = sum(err)/sum(CVO.TestSize);
Alternatively, you can use cvpartition(n,'LeaveOut') leave-one-out cross-validation.
For further information about the cross-validation in MATLAB, please refer to the link: https://www.mathworks.com/help/stats/cvpartition.html
1 commentaire
Chhavi Bharti
le 5 Fév 2021
Modifié(e) : Chhavi Bharti
le 5 Fév 2021
@Pranav Verma Hi pranav I tried this code. But this is randomly doing the partition. How cound i get an index for tested data?
fold=cvpartition(label,'LeaveOut');
cp=classperf(label);
confmat=0;
for k=1:size(label,2)
trainIdx=fold.training(k); testIdx=fold.test(k);
xtrainc=imgs(trainIdx); ytrainc=label(trainIdx);
xtestc=imgs(testIdx); ytestc=label(testIdx);
xTrainImages=xtrainc';
tTrain=ytrainc;
xTestImages=xtestc';
tTest=ytestc;
%%DNN model
[c,cm,ind,per]=confusion(tTest,y); % y is output of DNN model
end
Voir également
Catégories
En savoir plus sur Gaussian Process Regression dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!