Abrupt changes in data; 'ischange', means, and 'stairs'

12 vues (au cours des 30 derniers jours)
noMathWiz
noMathWiz le 10 Juil 2020
Modifié(e) : Matt J le 10 Juil 2020
I have multiple, large data sets that I need to acertain the means along certain linear regions. The regions are dileneated by relatively abrupt changes, as shown in the figure below that I manually marked up.
Ultimately I want a 7 element array of the means of each of these regions (aka the y-intercepts as shown). Thoughts? Other types of curve fittings that could help?
A sample data set is attached.
The below code not working for me, and I've tried a variety of max number of changes and threshold levels.
[TF,S1] = ischange(a, 'linear','MaxNumChanges',12);
plot(a, '*')
hold on
stairs(S1)

Réponse acceptée

Matt J
Matt J le 10 Juil 2020
Modifié(e) : Matt J le 10 Juil 2020
Here is a method using the Image Processing Toolbox (treating the signal as a 1D image, in other words).
load('dataTest.mat')
w=5000;
b=movmedian(a,w);
cmax=movmax(b,[w,1]);
cmin=movmin(b,[1,w]);
q=cmax-cmin;
lmap=bwlabel(q<0.01);
result = regionprops('table',lmap,b,'MeanIntensity')
plot(a)
hold on
for i=1:size(result,1)
plot(xlim,result{i,1}*[1,1],'--')
end
hold off

Plus de réponses (1)

Matt J
Matt J le 10 Juil 2020
Modifié(e) : Matt J le 10 Juil 2020
Yes, you can use splitapply(@mean,data,G)
with G identifying the regions you wwant grouped together,
  4 commentaires
noMathWiz
noMathWiz le 10 Juil 2020
Thanks for your help, but I think this is too much manual work (i.e. it requires me to manually find where the changes in data are, delete the data, then create G vectors of the same length).
Matt J
Matt J le 10 Juil 2020
Modifié(e) : Matt J le 10 Juil 2020
If you were to construct G manually, it would indeed be a lot of work, but the philosophy behind splitapply is that you would find some automated way to construct the group labels. Below is a method that makes use of group1s from the File Exchange.
load('dataTest.mat')
w=5000;
b=movmedian(a,w);
cmax=movmax(b,[w,1]);
cmin=movmin(b,[1,w]);
q=cmax-cmin;
lmap=group1s(q<0.01);
result = splitapply(@mean, b, findgroups(lmap))
result(1)=[];
plot(a)
hold on
for i=1:size(result,1)
plot(xlim,result(i)*[1,1],'--')
end
hold off

Connectez-vous pour commenter.

Catégories

En savoir plus sur Get Started with Curve Fitting Toolbox dans Help Center et File Exchange

Produits


Version

R2018b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by