Increasing accuracy of Whittaker functions

5 vues (au cours des 30 derniers jours)
Yuriy Yerin
Yuriy Yerin le 18 Juil 2020
Commenté : Joshua Brown le 23 Sep 2023
Hello.
I know that there were a lot questions devoted to accuracy of fslove procedure.
I'm trying to solve a transcendental equation with so-called Whittaker functions and the gamma function
where k is the integer number, and are some parameters (see below) and E is the unknown variable.
Below is my code
function z=dispersion
mm=linspace(0,20,21);
for j=1:21
[y,fval]=fzero(@(E) self(E,mm(j)),0.51,optimset('Display','off','TolFun', 1.0e-15, 'TolX',1.0e-15));
Energy(j)=y;
value(j)=fval;
end
Energy
value
end
function z=self(E,m)
r1=0.25;
r2=5;
z=gamma(1/2+floor(abs(m))/2-E-floor(m)/2).*(whittakerM(E+floor(m)/2,floor(abs(m))/2,r2^2/2).*whittakerW(E+floor(m)/2,floor(abs(m))/2,r1^2/2)-...
whittakerM(E+floor(m)/2,floor(abs(m))/2,r1^2/2).*whittakerW(E+floor(m)/2,floor(abs(m))/2,r2^2/2));
end
I have a problem with accuracy of Whittaker functions in the case of large parameter m . When for instance I obtain and value = -3.048609148470981*1.0e+22 that is inappropriate accuracy. Is it possible to resolve such a kind of problem?
P.S. Actually I understand the origin of the problem. Abnormal values of fval is due to behaviour of Whittaker functions for large values of m. Nevertheless I would greatly appreciate for any suggestions.
  1 commentaire
Joshua Brown
Joshua Brown le 23 Sep 2023
Hey! I've had the same issue. A quick fix is the folowing:
m = sym(m);
double(whittakerM(E+floor(m)/2,floor(abs(m))/2,r1^2/2));
(I.e. going via symbolic algebra to deal with things like (e^(pi*m))*e^-(pi*m) better) then should be accurate even for large m.

Connectez-vous pour commenter.

Réponses (0)

Catégories

En savoir plus sur Downloads dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by