Creating a 3D volume containing an edge interpolated sphere from X,Y,Z coordinates
4 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hi,
I would like to create a NxNxN volume containing a sphere of radius R, where R can be a fraction of a pixel, so the surface of the sphere is interpolated over multiple voxels in the radial direction.
I wish to embed a sphere of ones (excluding the surface) in a volume of zeros.
How would this be done?
Thanks,
Matt
Here's where I'm starting from.
R = 195;
[X,Y,Z] = sphere(R);
X =round(10*X);
Y =round(10*Y);
Z =round(10*Z);
N = 200;
A = zeros(N,N,N);
P=95;
for i=1:size(X,1)
for j=1:size(Y,2)
A(P+X(i,j),P+Y(i,j),P+Z(i,j)) = 1;
end
end
figure(1);volshow(A);
sizeIn = size(A);
figure(2);slice(double(A),sizeIn(2)/2,sizeIn(1)/2,sizeIn(3)/2);
grid on, colormap gray
0 commentaires
Réponses (1)
Tim
le 29 Oct 2020
Modifié(e) : Tim
le 29 Oct 2020
This is my best guess as to what you are asking for (updated - misinterpreted your question... hopefully this is closer to what you were looking for).
figure
r = 10; % Radius
W = r*1.1; % Volume edge half-length
N = 35; % Number of voxels along edge
% 3D meshgrid to get radii
[x3, y3, z3] = meshgrid(linspace(-W, W, N), linspace(-W, W, N), linspace(-W, W, N));
rad3 = sqrt(x3.^2 + y3.^2 + z3.^2);
% Voxel of "ones" bounding the surface of the sphere:
volDat = zeros(size(x3));
volDat(rad3 > r - sqrt(3*(W/(N-1)).^2) & rad3 < r + sqrt(3*(W/(N-1)).^2)) = 1;
% Cut-away half to show the results...
volDat(:, ceil(N/2):end, :) = 0;
% Visualization stuff. You will need VOXview from file exchange to
% reproduce.
% The sphere of ones:
pp.edgecolor = 'none';
VOXview(volDat, volDat*0.75, 'colormap', hsv,...
'patch_props', pp,...
'CornerXYZ', [x3(1), y3(1), z3(1)],...
'VoxelSize', 2*W/(N-1),...
'bounding_box', true);
% The bounding spherical surface:
[XX, YY, ZZ] = sphere(100);
hold on
S = surf(XX*r, YY*r, ZZ*r, 'FaceAlpha', 0.7, 'FaceColor', [0.95, 0.95, 0.95]);
S.EdgeColor = 'none';
hold off
light('position', [0, 1, 5]);
Here is a picture of the result:
0 commentaires
Voir également
Catégories
En savoir plus sur Surface and Mesh Plots dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!