How to index Neural Network for loop
5 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Justin Hayes
le 1 Août 2020
Commenté : Justin Hayes
le 7 Août 2020
I would like to run this loop 4 times for the InitialLearnRate values of 0.0001, 0.001, 0.01, and 0.1. I would like to index the loop as well so I can compare the fracCorrect for each loop. Thank you!
InitialLearnRate = [0.0001,0.001,0.01,0.1]
augmentedDS_test = zeros(1,length(InitialLearnRate))
predictions = zeros(1,length(InitialLearnRate))
fracCorrect = zeros(1,length(InitialLearnRate))
for i = InitialLearnRate
imageDS = imageDatastore('deeplearning_course_files','IncludeSubfolders',true,'LabelSource','foldernames');
[wormTrain,wormTest] = splitEachLabel(imageDS,0.2); % takes x images from
augmentedDS_train = augmentedImageDatastore([227 227],wormTrain,'ColorPreprocessing','gray2rgb')
augmentedDS_test = augmentedImageDatastore([227 227],wormTest,'ColorPreprocessing','gray2rgb')
net = alexnet;
layers = net.Layers
fc = fullyConnectedLayer(2);
layers(end-2) = fc;
layers(end) = classificationLayer;
options = trainingOptions('sgdm','InitialLearnRate',i,'Momentum',0.1,'MaxEpochs',15)
[wormnet,info] = trainNetwork(augmentedDS_train,layers,options);
predictions = classify(wormnet,augmentedDS_test);
wormActual = wormTest.Labels;
numCorrect = nnz(predictions == wormActual);
fracCorrect = numCorrect/numel(predictions)
end
confusionchart(wormTest.Labels,predictions)
plot(info.TrainingLoss)
0 commentaires
Réponse acceptée
Anshika Chaurasia
le 6 Août 2020
You can consider trying indexing as given below:
for i = 1:length(InitialLearnRate)
....
options = trainingOptions('sgdm','InitialLearnRate',InitialLearnRate(i),'Momentum',0.1,'MaxEpochs',15)
....
fracCorrect(i) = numCorrect/numel(predictions)
...
end
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Deep Learning Toolbox dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!