Wrong Hessian output in fminunc
2 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Can somebody explain weird Matlab's output for the following optimization problem? The goal is to minimize
and to evaluate Hessian matrix at the solution. However, Matlab returns a matrix of NaNs for the Hessian at the solution point. Here is the code

[xOpt,~,~,~,grad,hessian] = fminunc(@(x) x(1)^2+x(2)^2,[1,1])
0 commentaires
Réponse acceptée
Matt J
le 13 Août 2020
Modifié(e) : Matt J
le 13 Août 2020
Another solution would be to use standalone routines for numerical gradient and hessian estimation
https://www.mathworks.com/matlabcentral/fileexchange/13490-adaptive-robust-numerical-differentiation
fun=@(x) (x(1)^2+x(2)^2);
xOpt = fminunc(fun ,[1,1]);
g=gradest(fun,xOpt)
H=hessian(fun,xOpt)
No hidden scale factors if you go that route:
xOpt =
0 0
g =
0 0
H =
2.0000 0
0 2.0000
3 commentaires
Matt J
le 16 Août 2020
There is no requirement in the solution I've given you that the objective be in analytic form.
Plus de réponses (2)
Bruno Luong
le 12 Août 2020
Modifié(e) : Bruno Luong
le 13 Août 2020
I guess the hessian is estimated from BFGS formula, that needs more than 1 FMINUNC iteration. In you case the minimum is reached in 1 iteration (since the gradient point directly to the minimum), the hessian estimation is not yet in the update cycle.
A small modification make # iteration > 1, and hessian starts well.
[xOpt,~,~,~,grad,hessian] = fminunc(@(x) 2*x(1)^2+x(2)^2,[1,1])
2 commentaires
Bruno Luong
le 13 Août 2020
Modifié(e) : Bruno Luong
le 13 Août 2020
Not 100% satisfied answer but if you use trust-region algorithm and suppy the gradient, you 'll get back the hessian even with 1 iteration
options = optimoptions('fminunc', ...
'Algorithm', 'trust-region', ...
'SpecifyObjectiveGradient', true ...
);
[xOpt,out,b,c,grad,hessian] = fminunc(@fun,[1,1],options)
function [f,g] = fun(x)
% Calculate objective f
f = x(1)^2+x(2)^2;
if nargout > 1 % gradient required
g = 2*x;
end
end
If your function is quadratic and the -gradient points toward the minimum at any point, meaning if FMINUNC converge in 1 iteration regardless the starting point, then you must have hessian that is a scale of eye matrix. The NAN likely happens only for the trivial case as you have showed.
Matt J
le 13 Août 2020
Modifié(e) : Matt J
le 13 Août 2020
Just run fmincon (twice) with no constraints. Running a second time is important, because the hessian output is not the Hessian calculated at the final point, but rather the Hessian at the point just prior to that.
fun=@(x) x(1)^2+x(2)^2;
xOpt = fmincon(fun ,[1,1]);
[xOpt,~,~,~,~,grad,hessian] = fmincon(fun,xOpt)
xOpt =
1.0e-08 *
0.5588 0.5588
grad =
1.0e-07 *
0.2608
0.2608
hessian =
1 0
0 1
4 commentaires
Matt J
le 17 Août 2020
Not as far as I can see. The documentation on the meaning of the Hessian output is here,
but there is no mention that I can see of any pre-scaling of the objective.
Voir également
Catégories
En savoir plus sur Solver Outputs and Iterative Display dans Help Center et File Exchange
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!