fastest way to apply A\B on each matrix page

1 vue (au cours des 30 derniers jours)
hosein Javan
hosein Javan le 17 Août 2020
Commenté : hosein Javan le 17 Août 2020
I would like to find an efficient fast way for calculating:
for i = 1:n
X(:,:,i) = A(:,:,i)\B(:,:,i)
end
where A and B are 10*10*n, and 10*1*n size matrices respectively. the matrices are large and must be called meny times. therefore I was thinking of replacing "for loops" with a faster way that does it very fast and not iteratively.

Réponse acceptée

Bruno Luong
Bruno Luong le 17 Août 2020
Modifié(e) : Bruno Luong le 17 Août 2020
Why insist on ARRAYFUN, your for-loop is perfectly fine. ARRAYFUN is a "vectoriztion" scam.
n = 100;
A = rand(10,10,n);
B = rand(10,1,n);
X = arrayfun(@(p) A(:,:,p)\B(:,:,p), 1:n, 'unif', 0);
X = cat(3,X{:});
  5 commentaires
hosein Javan
hosein Javan le 17 Août 2020
Bruno Luong. sorry for misunderstanding. I did not mean to decieve. I only thought that arrayfun is a best replace for "loop". I'll edit the question.
hosein Javan
hosein Javan le 17 Août 2020
I studied your MultiSolver. it was using concatenation diagonally and make a sparse matrix as I said. I see there's no better way. however ur using of repmat and rehsape was something speedy to extract unknowns without loops. I accept your answer. thanks, but I'd like to mention once more that it was misunderstanding. please don't use words like "big scam". thanks again.

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Operating on Diagonal Matrices dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by