- Is this a homework assignment?
- Is the only requirement that the six parts have equal area? I'm wary of other assumptions you may be neglecting to mention. For example, would it be ok to just make vertical slices? Or do you need to find a single point in the interior, such that lines to the vertices separate the area equally?
How to split a polygon.
37 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Carlos Zúñiga
le 31 Août 2020
Commenté : Bruno Luong
le 31 Août 2020
Hello everyone.
If I have a polygon with the following coordinates:
x=[0 4 7 5 1]; %Polygon x-coordinates
y=[0 -2 0 10 8]; %Polygon y-coordinates
How can I split the polygon formed by the coordinates shown bellow in for example six parts which area is equal to each other?
2 commentaires
the cyclist
le 31 Août 2020
Two questions before anyone spends time thinking about this:
Réponse acceptée
Bruno Luong
le 31 Août 2020
Modifié(e) : Bruno Luong
le 31 Août 2020
Each slice has area of 9.5
x=[0 4 7 5 1]; %Polygon x-coordinates
y=[0 -2 0 10 8]; %Polygon y-coordinates
n = 6;
P = polyshape(x,y);
A = P.area/n;
xmin = min(x); xmax = max(x);
ymin = min(y); ymax = max(y);
x0 = xmin+0.01;
b = zeros(1,n-1);
Q = cell(1,n);
Qk = polyshape(); % empty
for k=1:n-1
x0 = fzero(@(x) areafun(P, xmin, x, ymin, ymax)-k*A, x0);
b(k) = x0;
Qp = Qk;
[s, Qk] = areafun(P, xmin, b(k) , ymin, ymax);
Q{k} = subtract(Qk, Qp);
end
Q{n} = subtract(P, Qk);
close all;
figure
hold on
for k=1:n
Q{k}.area
plot(Q{k});
end
axis equal
function [s, Q] = areafun(P, xmin, xmax, ymin, ymax)
R = polyshape([xmin xmax xmax xmin],[ymin ymin ymax ymax]);
Q = intersect(P,R);
s = Q.area;
end
6 commentaires
Bruno Luong
le 31 Août 2020
Star-like partitioning
x=[0 4 7 5 1]; %Polygon x-coordinates
y=[0 -2 0 10 8]; %Polygon y-coordinates
n = 6;
P = polyshape(x,y);
A = P.area/n;
xmin = min(x); xmax = max(x);
ymin = min(y); ymax = max(y);
b = zeros(1,n-1);
Q = cell(1,n);
[xc,yc] = P.centroid;
r = sqrt(max((x-xc).^2+(y-yc).^2))*1.1;
Qk = polyshape(); % empty
x0 = 2*pi/n;
for k=1:n-1
x0 = fzero(@(tt) areafun(P, xc, yc, tt, r)-k*A, x0);
b(k) = x0;
Qp = Qk;
[s, Qk] = areafun(P, xc, yc, x0, r);
Q{k} = subtract(Qk, Qp);
end
Q{n} = subtract(P, Qk);
close all;
figure
hold on
for k=1:n
Q{k}.area
plot(Q{k});
end
axis equal
function [s, Q] = areafun(P, xc, yc, tt, r)
ntt = max(ceil(abs(tt)*128),2);
phi = linspace(0,tt,ntt);
Q = polyshape([xc xc+r*cos(phi)],[yc yc+r*sin(phi)]);
Q = intersect(P,Q);
s = sign(tt)*Q.area;
end
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Elementary Polygons dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!