Approximating Pi by Using Ramanujan's Formula

13 vues (au cours des 30 derniers jours)
Peter Wang
Peter Wang le 1 Sep 2020
Modifié(e) : Bruno Luong le 1 Sep 2020
Hi. This is my first post so please let me know if I violate any kind of rules. Thank you in advance.
I intend to approximate pi by summing a specified number of terms (k). The output I got was nowhere near what I wanted. Could someone help me please?
Here is the equation I'm using:
And there is the code:
k = input('Number of terms: ');
pi2 = sum(factorial([1:k]*4).*(1103+26390*[1:k]));
pi2 = pi2/((factorial([1:k])^4)*396^(4*[1:k]));
pi2 = (pi2*(2*sqrt(2)/9801))^(-1);
fprintf('Method: %.20f\n', pi2);
  5 commentaires
Walter Roberson
Walter Roberson le 1 Sep 2020
Beyond 21 you should probably be using the Symbolic Toolbox
Bruno Luong
Bruno Luong le 1 Sep 2020
Modifié(e) : Bruno Luong le 1 Sep 2020
You already get inexact result even for one term since the division in double is inexact. As long as D and N is finite the calculation is OK (and inexact anyway for partial sum).
Actually the result doesn't change after N=2 and it's already equal to 1/pi at 15 digits !!!
>> N=1:42;
>> Ramanujan=@(N)(2*sqrt(2)/9801)*sum((factorial(4*(0:N)).*(1103+26390*(0:N))./((factorial(0:N).^4).*(396.^(4*(0:N))))));
>> A=arrayfun(Ramanujan, N); % only the last term is NaN
>> A==1/pi
ans =
1×42 logical array
Columns 1 through 26
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Columns 27 through 42
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Connectez-vous pour commenter.

Réponse acceptée

Stephen23
Stephen23 le 1 Sep 2020
>> k = 5;
>> V = 0:k;
>> N = factorial(4.*V).*(1103+26390.*V);
>> D = (factorial(V).^4).*(396.^(4.*V));
>> (2*sqrt(2)/9801)*sum(N./D)
ans = 3.183098861837907e-01
>> 1./pi
ans = 3.183098861837907e-01

Plus de réponses (0)

Catégories

En savoir plus sur Biological and Health Sciences dans Help Center et File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by