Approximating Pi by Using Ramanujan's Formula
13 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hi. This is my first post so please let me know if I violate any kind of rules. Thank you in advance.
I intend to approximate pi by summing a specified number of terms (k). The output I got was nowhere near what I wanted. Could someone help me please?
Here is the equation I'm using:

And there is the code:
k = input('Number of terms: ');
pi2 = sum(factorial([1:k]*4).*(1103+26390*[1:k]));
pi2 = pi2/((factorial([1:k])^4)*396^(4*[1:k]));
pi2 = (pi2*(2*sqrt(2)/9801))^(-1);
fprintf('Method: %.20f\n', pi2);
5 commentaires
Bruno Luong
le 1 Sep 2020
Modifié(e) : Bruno Luong
le 1 Sep 2020
You already get inexact result even for one term since the division in double is inexact. As long as D and N is finite the calculation is OK (and inexact anyway for partial sum).
Actually the result doesn't change after N=2 and it's already equal to 1/pi at 15 digits !!!
>> N=1:42;
>> Ramanujan=@(N)(2*sqrt(2)/9801)*sum((factorial(4*(0:N)).*(1103+26390*(0:N))./((factorial(0:N).^4).*(396.^(4*(0:N))))));
>> A=arrayfun(Ramanujan, N); % only the last term is NaN
>> A==1/pi
ans =
1×42 logical array
Columns 1 through 26
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Columns 27 through 42
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
Réponse acceptée
Stephen23
le 1 Sep 2020
>> k = 5;
>> V = 0:k;
>> N = factorial(4.*V).*(1103+26390.*V);
>> D = (factorial(V).^4).*(396.^(4.*V));
>> (2*sqrt(2)/9801)*sum(N./D)
ans = 3.183098861837907e-01
>> 1./pi
ans = 3.183098861837907e-01
0 commentaires
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Biological and Health Sciences dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!