Convert Image Classification Network into Regression Network using ResNet18
7 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Kenneth Afebu
le 1 Sep 2020
Commenté : Kenneth Afebu
le 8 Sep 2020
I will appreciate it if anyone can help, and thanks in advance. The images are in augmented image datastore
My code:
net = resnet18;
layers = net.Layers;
numResponses = 1;
layers = [
layers(1:68)
fullyConnectedLayer(numResponses)
regressionLayer];
options = trainingOptions('sgdm',...
'InitialLearnRate',0.001, ...
'ValidationData',{augimdsImagesP11Test,P11Test_betaRepBSN8},...
'Plots','training-progress',...
'Verbose',false);
net2 = trainNetwork(augimdsImagesP11Train,P11Train2_beta,layers,options);
ERROR =
Error using trainNetwork (line 170)
Layers argument must be an array of layers or a layer graph.
0 commentaires
Réponse acceptée
Madhav Thakker
le 8 Sep 2020
Hi Kenneth,
I understand that you want to convert the pretrained resent-18 to regression network.
While training the network, we must pass the Layer graph or an array of layers to our network. I am attaching a code snippet that does the same with resnet-18 network and modifies the network to be used as a regression network.
net = resnet18;
lgraph = layerGraph(net);
numClasses = 1;
newLearnableLayer = fullyConnectedLayer(numClasses, ...
'Name','new_fc', ...
'WeightLearnRateFactor',10, ...
'BiasLearnRateFactor',10);
regress = regressionLayer('Name', 'new_reg');
lgraph = replaceLayer(lgraph,"fc1000",newLearnableLayer);
lgraph = removeLayers(lgraph, "ClassificationLayer_predictions");
lgraph = replaceLayer(lgraph,"prob",regress);
Note that, the input to the network is same as the pretrained resnet-18, i.e., images with shape (224, 224, 3).
For more information, see https://www.mathworks.com/help/deeplearning/ug/convert-classification-network-into-regression-network.html
Hope this helps.
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Deep Learning Toolbox dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!