Empty sym: 0-by-1
3 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
clc;
clear;
syms x y z
a=-53.774+70+((30*(2*(37.839-x)-y))/((2*z-x)-y));
b=-54.827+70+((30*(2*(38.886-x)-y))/((2*z-x)-y));
c=-55.879+70+((30*(2*(39.932-x)-y))/((2*z-x)-y));
denklem=solve(a,b,c);
denklem.x
0 commentaires
Réponses (1)
Walter Roberson
le 9 Sep 2020
Your equations are inconsistent. There is no solution.
>> subs(c,solve([a,b],[x,y]))
ans =
-1/174500 == 0
Your third equation is not consistent with the first two.
1 commentaire
Walter Roberson
le 9 Sep 2020
The problem is in floating point round off.
syms x y z
T = sym(19501769)/sym(349000)
a=-53.774+70+((30*(2*(37.839-x)-y))/((2*z-x)-y));
b=-54.827+70+((30*(2*(38.886-x)-y))/((2*z-x)-y));
c=-T+70+((30*(2*(39.932-x)-y))/((2*z-x)-y));
subs(c,solve([a,b],[x,y]))
The result will be 0.
If you solve([a,b,c]) then you will get a numeric x and y, and z would be 0. This is not the full story. What the above tells you is that with that set of equations, you only have two independent variables, and the third equation will be satisfied if you know the values for any two of the variables.
Voir également
Catégories
En savoir plus sur Logical dans Help Center et File Exchange
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!