Improve NN performance and prediction error

5 vues (au cours des 30 derniers jours)
Ande Mandoyi
Ande Mandoyi le 11 Sep 2020
Commenté : Ande Mandoyi le 12 Sep 2020
I've been stuck on a homework question for a while now. The question is as follows:
Design a feed forward multi-layer neural network to approximate the function y=sin(x1)+cos(x2).
Here, -5<x1<5 and 0<x2<5. Please use x1 = (rand(1,50)-0.5)*10; x2 = rand(1,50)*5; to get the samples to train the neural network. Finally, please draw the prediction error series y - ynet for the inputs x1=-5:0.1:5 and x2=0:0.05:5.
My code is as follows. I get keep getting large prediction errors for unkknown dataset "input". Please help
x1 = (rand(1,50)-0.5)*10 %training sample one
x2 = rand(1,50)*5; %training sample two
x = [x1;x2];
y=sin(x1)+cos(x2); %targeted output
%feed-forward neural network with one hidden layer
%hidden layer has 10 hidden neurons
%10000 epochs training cycles, stops training when the...
%error is less or equal to 1e-25/ after 10000 epochs
%hidden neurons use a tan sigmoid activation function
%output neurons use a linear activation function
%learning rate = 0.01
%Levenberg-Marquad back-propogation is used
%***********************************************************
net = newff(minmax(x),[10 1],{'tansig','purelin'},'trainlm');
net.trainparam.epochs = 10000;
net.trainparam.goal = 1e-25;
net.trainparam.lr = 0.02;
net = train(net,x,y);
%************************************************************
input1 = -5:0.1:5; %first input
input2 = 0:0.05:5; %2nd input
input = [input1;input2];
y=sin(input1)+cos(input2);
ynet = net(input);
plot(y-ynet) %error series plot
title('Error series plot')
grid
  2 commentaires
Mohammad Sami
Mohammad Sami le 12 Sep 2020
Have you tried adding more hidden layers ?
Ande Mandoyi
Ande Mandoyi le 12 Sep 2020
Yes, does the code look fine though?

Connectez-vous pour commenter.

Réponses (0)

Catégories

En savoir plus sur Deep Learning Toolbox dans Help Center et File Exchange

Produits


Version

R2019a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by