least-squares-regression

5 vues (au cours des 30 derniers jours)
Nicholas Deosaran
Nicholas Deosaran le 14 Sep 2020
Réponse apportée : KSSV le 14 Sep 2020
I need help understing what to do here,
I know i need to slobe for p1 and p2x but stuck, I have the code below but just stuck.
y(𝑥)=𝑝1+𝑝2𝑥
where
x = 0:0.1:20;
noise =?? % a number, to define
y= 4*x + noise*rand(1,length(x));
Vary the value for noise as 0, 50 and 100 to get three different results for 𝑝1and 𝑝2,
From a linear algebra standpoint, determine the coefficients, 𝑝1and 𝑝2, of the least-squares-regression of a line fit through the data defined above.
thank you

Réponses (1)

KSSV
KSSV le 14 Sep 2020
Read about polyfit. If you have the data x, y you can fit a line and get p1, p2 using polyfit.
p = polyfit(x,y,1) ;
p1 = p(1) ; p2 = p(2) ;

Catégories

En savoir plus sur Linear and Nonlinear Regression dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by