Can someone provide me the theory and math behind this function of eigen?
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Atik Faysal
le 23 Sep 2020
Réponse apportée : Steven Lord
le 23 Sep 2020
[V,D] = eig(A,B)
returns diagonal matrix D of generalized eigenvalues and full matrix V whose columns are the corresponding right eigenvectors, so that A*V = B*V*D.
2 commentaires
Bjorn Gustavsson
le 23 Sep 2020
For a more exheustive introduction with some more details you can turn to: Eigenvalues and eigenvectors at wikipedia and Generalized eigenvectors.
Réponse acceptée
Bruno Luong
le 23 Sep 2020
Modifié(e) : Bruno Luong
le 23 Sep 2020
for each column number j,
A*V = B*V*D
implies
A*xj = lambdaj*B*xj
where
xj = V(:,j)
lambdaj = D(j,j)
This is just a generalization of normal eigen value problem.
A*xj = lambdaj*xj
If B is invertible, V and D is the same as standard eigen vectors/values of M := inv(B)*A.
0 commentaires
Plus de réponses (1)
Steven Lord
le 23 Sep 2020
You might find the "Eigenvalues and Singular Values" chapter in Cleve Moler's Numerical Computing with MATLAB, available here, useful.
0 commentaires
Voir également
Catégories
En savoir plus sur Linear Algebra dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!