Can someone provide me the theory and math behind this function of eigen?

1 vue (au cours des 30 derniers jours)
[V,D] = eig(A,B)
returns diagonal matrix D of generalized eigenvalues and full matrix V whose columns are the corresponding right eigenvectors, so that A*V = B*V*D.
  2 commentaires
KSSV
KSSV le 23 Sep 2020
Eigen values are very basic..they are the solution/ roots of det(A-lambda*B)=0.
Bjorn Gustavsson
Bjorn Gustavsson le 23 Sep 2020
For a more exheustive introduction with some more details you can turn to: Eigenvalues and eigenvectors at wikipedia and Generalized eigenvectors.

Connectez-vous pour commenter.

Réponse acceptée

Bruno Luong
Bruno Luong le 23 Sep 2020
Modifié(e) : Bruno Luong le 23 Sep 2020
for each column number j,
A*V = B*V*D
implies
A*xj = lambdaj*B*xj
where
xj = V(:,j)
lambdaj = D(j,j)
This is just a generalization of normal eigen value problem.
A*xj = lambdaj*xj
If B is invertible, V and D is the same as standard eigen vectors/values of M := inv(B)*A.

Plus de réponses (1)

Steven Lord
Steven Lord le 23 Sep 2020
You might find the "Eigenvalues and Singular Values" chapter in Cleve Moler's Numerical Computing with MATLAB, available here, useful.

Catégories

En savoir plus sur Linear Algebra dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by