Time series training using 2D CNN

8 vues (au cours des 30 derniers jours)
igor Lisogursky
igor Lisogursky le 23 Sep 2020
Hi ,
I am trying to use 2D CNN to train and then predict time series (specifically analog signal splitted into 5 samples each sequence ---> the whole input matrix is Nx5) ...
Though i defined 4d matrices XTrain and YTrain for trainNetwork() function as follows :
... COMMENTS ...
I defently defined 4d matrix with images 1xchannel_length but still getting the error below :
"
>> MatlabNnPilot
155 net = trainNetwork(XTrain,YTrain,layers,options);
Error using trainNetwork (line 165)
Invalid training data. X must be a 4-D array of images.
Error in MatlabNnPilot (line 155)
net = trainNetwork(XTrain,YTrain,layers,options);
"
Please advise how to resovle it if possible ?
Igor
  1 commentaire
igor Lisogursky
igor Lisogursky le 27 Sep 2020
As well attaching here the sizes of XTrain and YTrain from the same code :

Connectez-vous pour commenter.

Réponses (1)

Srivardhan Gadila
Srivardhan Gadila le 28 Sep 2020
I tried the following code which is written based on the above mentioned code & I'm not getting any errors. You can refer to the net = trainNetwork(X,Y,layers,options) syntax and also it's corresponding Input Arguments description.
Try checking the following code once:
input_size = 5;
output_size = 1;
numHiddenUnits = 32;
epochs = 50;
nTrainSamples = 40725;
layers = [ ...
imageInputLayer([1 input_size 1],'Name','input')
convolution2dLayer([1 input_size],1,'Name','conv')
batchNormalizationLayer('Name','bn')
reluLayer('Name','relu')
fullyConnectedLayer(output_size, 'Name','fc')
regressionLayer('Name','regression')];
% lgraph = layerGraph(layers);
% analyzeNetwork(layers)
%%
trainData = randn([1 5 1 nTrainSamples]);
% trainLabels = randn(nTrainSamples,numClasses);
trainLabels = randn([1 1 1 nTrainSamples]);
size(trainData)
size(trainLabels)
%%
options = trainingOptions('adam', ...
'InitialLearnRate',0.005, ...
'ValidationData',{trainData,trainLabels},...
'LearnRateSchedule','piecewise',...
'MaxEpochs',epochs, ...
'MiniBatchSize',32, ...
'Verbose',1, ...
'Plots','training-progress');
net = trainNetwork(trainData,trainLabels,layers,options);
  5 commentaires
Srivardhan Gadila
Srivardhan Gadila le 6 Oct 2020
@igor Lisogursky, you can verify the same by creating your network and using analyzeNetwork function to view the shape of the activations after each layer.
igor Lisogursky
igor Lisogursky le 9 Oct 2020
Thanks @Srivardhan Gadila for a responde it will be usefull func

Connectez-vous pour commenter.

Catégories

En savoir plus sur Deep Learning Toolbox dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by