LSTM forecasting time series
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hi,
I'm currently learning how to use LSTM using the chicken pox example,
link: https://www.mathworks.com/help/deeplearning/ug/time-series-forecasting-using-deep-learning.html
The data in this example is just 1 row with multiple columns. Does anyone know how I can use it with more data sets (multple row and mutiple columns).
It would be appreciate to provide the example or explanation about it.
Thank you
1 commentaire
ghada alabaidy
le 28 Mai 2021
Excuse me, can I know how the test is calculated? I collected data from the accelerometer with a smartphone and I want it to work in LSTM Can you help me with many thanks
Réponses (1)
Srivardhan Gadila
le 1 Oct 2020
Refer to the documentation of trainNetwork to understand what should be the input and target data format & shape.
Also the following code might help you:
inputSize = [13 11 1];
nTrainSamples = 50;
filterSize = 5;
numFilters = 20;
numHiddenUnits = 200;
numResponses = 5;
layers = [ ...
sequenceInputLayer(inputSize,'Name','input')
flattenLayer('Name','flatten')
lstmLayer(numHiddenUnits,'Name','lstm','OutputMode','sequence')
fullyConnectedLayer(numResponses, 'Name','fc')
regressionLayer('Name','regression')];
lgraph = layerGraph(layers);
analyzeNetwork(layers)
%%
trainData = arrayfun(@(x)rand([inputSize(:)' 1]),1:nTrainSamples,'UniformOutput',false)';
trainLabels = arrayfun(@(x)rand(numResponses,1),1:nTrainSamples,'UniformOutput',false)';
size(trainData)
size(trainLabels)
%%
options = trainingOptions('adam', ...
'InitialLearnRate',0.005, ...
'LearnRateSchedule','piecewise',...
'MaxEpochs',300, ...
'MiniBatchSize',1024, ...
'Verbose',1, ...
'Plots','training-progress');
net = trainNetwork(trainData,trainLabels,lgraph,options);
0 commentaires
Voir également
Catégories
En savoir plus sur Sequence and Numeric Feature Data Workflows dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!