Looking for a very fast root finding method in Matlab

6 vues (au cours des 30 derniers jours)
Behnam
Behnam le 2 Oct 2020
Modifié(e) : Bruno Luong le 6 Oct 2020
I am trying to solve an equation like below in Matlab
ai, bi, and ci are vectors of length 10 and these vectors change through the code. this code has to be executed more than 1 million times. So, the method for finding x must be very fast. I tried the following codes:
method 1:
s=tf('s');%transfer function
sys=0;
for i=1:10
sys =sys+a(i)/(s*b(i)+c(i));
end
[roots1] = zpkdata(sys,'v');
In this case, the for loop takes 0.1 second to be completed on my PC and [roots] = zpkdata(sys,'v');executes in less than 0.005 seconds. So, preparing the equation sys before being solved by zpkdata takes a long time for a million times run in the real case. Seemingly vectorized operation does not work for 'tf' argument type.
Next, I checked the following method: method 2:
syms x
sys=sum(a./(x*b+c));
[roots1]=vpasolve(sys,x)
This symbolic method was again slow and took 0.13 seconds to get executed. Do you know any fast method suitable for my case? Or, do you know a way to prepare sys more quickly in method 1?
Many tnx.

Réponse acceptée

Bruno Luong
Bruno Luong le 2 Oct 2020
Modifié(e) : Bruno Luong le 2 Oct 2020
% randomm coefficients for test
a=rand(1,10);
b=rand(1,10);
c=rand(1,10);
% assume a ~= 0
tic
n = length(a);
bn = b./a;
cn = c./a;
P = 1;
Q = [bn(1) cn(1)];
for k=2:n
P = [P*bn(k), 0] + [0, P*cn(k)] + Q;
Q = [Q*bn(k), 0] + [0, Q*cn(k)];
end
x = roots(P);
toc % Elapsed time is 0.000385 seconds.
% Check
x = x(:).'
fx = sum(a(:)./(b(:).*x+c(:)),1)
  7 commentaires
Paul
Paul le 5 Oct 2020
I looked more closely at the worst case that I saw and I agree that the zeros seem to be pretty accurate. Is any zero close to a pole? I'm not sure. Here's the data that I see:
>> index = 334;
disp('the data')
[a(334,:);b(index,:);c(index,:)]
[xr,fxr]=useroots(a(index,:),b(index,:),c(index,:));
[xt,fxt]=usetzero(a(index,:),b(index,:),c(index,:));
xr = sort(xr); xt = sort(xt);
disp('roots');
[xr xt]
disp('fx for each root');
[sum(a(index,:)./(b(index,:).*xr + c(index,:)),2) sum(a(index,:)./(b(index,:).*xt + c(index,:)),2)]
disp('evaluate the denominators at the fifth zero')
[((b(index,:).*xr(5) + c(index,:))) ; ((b(index,:).*xt(5) + c(index,:)))]
the data
ans =
Columns 1 through 8
5.403041674081475e-01 1.127955018909095e-01 2.091123542456026e-01 5.291713447535034e-01 8.596427432788267e-02 4.162109095747117e-01 6.974328024049009e-01 8.109584297027117e-02
3.914807928171162e-01 1.146364750887373e-01 6.027741708170893e-01 5.186778923606967e-01 8.162768010754857e-01 4.668434760127809e-01 7.865056595354460e-01 6.845644168380302e-01
3.077652099388081e-01 3.663647990555764e-01 3.056739234359613e-01 4.173917963553463e-01 6.568463572900645e-01 4.881625070399680e-01 7.140215217186643e-01 5.928806834423205e-01
Columns 9 through 10
1.577279766062935e-01 4.783351991950024e-01
7.740945923505923e-01 7.475420835940132e-01
4.959658147894286e-01 4.048304825339897e-01
roots
ans =
-2.839538690133413e+00 -2.839538690133357e+00
-1.007931214723476e+00 -1.007931215204822e+00
-8.819362558135367e-01 -8.819362340251731e-01
-8.599283416923192e-01 -8.599283771198578e-01
-8.046893095146248e-01 -8.046892524985675e-01
-7.960872390157562e-01 -7.960872818401908e-01
-6.531383428012292e-01 -6.531383430055718e-01
-5.815367632129854e-01 -5.815367630496052e-01
-5.157640198572923e-01 -5.157640198874921e-01
fx for each root
ans =
5.113687251423471e-13 3.552713678800501e-15
-3.763499218933930e-07 -3.634870182622763e-13
4.741643357686343e-05 -1.363353874239692e-13
-1.484119453740718e-04 -2.256861364458018e-12
5.504241178784788e+02 -4.750323030489056e-06
-1.251901757180818e-03 2.383870878475136e-12
-3.136275452675363e-07 -7.380762667708041e-13
9.649716403714592e-08 -3.055333763768431e-13
-1.706899546149998e-07 2.131628207280301e-12
evaluate the denominators at the fifth zero
ans =
Columns 1 through 8
-7.255198921435058e-03 2.741180530712299e-01 -1.793720078720927e-01 1.724129111635442e-05 -2.858140174866186e-06 1.124985526758360e-01 8.112882561774160e-02 4.201901553864418e-02
-7.255176600743762e-03 2.741180596073497e-01 -1.793719735042861e-01 1.727086408481737e-05 -2.811599290053479e-06 1.124985792934105e-01 8.112887046119344e-02 4.201905456980826e-02
Columns 9 through 10
-1.269398282281745e-01 -1.967086405464007e-01
-1.269397840923528e-01 -1.967085979244985e-01
The fifth zero is close to the fourth and fifth poles. At first glance it appears that the two solutions really aren't that different wrt to those pole locations, but maybe that (seemingly) small difference is significant.
Bruno Luong
Bruno Luong le 6 Oct 2020
Modifié(e) : Bruno Luong le 6 Oct 2020
f is a sum of the inverse distances to the poles (with phase). If f(x) is large then x must be "close" to one of the pole.

Connectez-vous pour commenter.

Plus de réponses (1)

John D'Errico
John D'Errico le 2 Oct 2020
Modifié(e) : John D'Errico le 2 Oct 2020
Symbolic methods (vpasolve) are NEVER efficient.
But all you have is a rational polynomial. The roots of a rational polynomial are the roots of the numerator polynomial. So compute that, or actually the coefficients of that polynomial. Then call roots. You won't be able to do it more quickly than that.
n = 10;
a = rand(1,n);
b = rand(1,n);
c = rand(1,n);
drop = @(V,ind) V(setdiff(1:length(V),ind));
tic
P = sym(0);
syms x
for i = 1:n;
P = P + a(i) * prod(x*drop(b,i) + drop(c,i));
end
toc
roots(sym2poly(P))
ans =
-2.8076
-2.0032
-1.3514
-1.2919
-1.0956
-0.86728
-0.40917
-0.29335
-0.029945
But again, this uses symbolic computations. Instead, we should build the coefficients directly.

Catégories

En savoir plus sur Stability Analysis dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by