Fitting Curve With an Inverse Which Fits a Polynomial
45 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Ephraim Bryski
le 5 Oct 2020
Commenté : Ameer Hamza
le 5 Oct 2020
Hi. I have 8 data points with x and y values. I would like to input new y values and interpolate x values.
I am able to input new x values and interpolate y values. I can fit the points with a sixth order polynomial for y vs. x which is valid in the range. However, I cannot fit a polynomial for x vs. y
One approach is to solve the polynomial for each y value; however, I have thousands of y values I want to interpolate for, so it would be extremely computationally intensive.
Does anyone know a faster approach? Thanks!
0 commentaires
Réponse acceptée
Ameer Hamza
le 5 Oct 2020
Modifié(e) : Ameer Hamza
le 5 Oct 2020
The inverse of a polynomial is not a polynomial, so you cannot simply interpolate the inverse function. Following shows two approaches
1) fzero()
x = linspace(0, 2, 8);
y = 5*x.^6 + 3*x.^5; % y varies from 0 to 416.
pf = polyfit(x, y, 6);
y_pred = @(x) polyval(pf, x);
% find x, when y = 100;
y_val = 100;
x_val = fzero(@(x) y_pred(x)-y_val, rand);
2) Polynomial root finding. This method gives all possible solutions
x = linspace(0, 2, 8);
y = 5*x.^6 + 3*x.^5; % y varies from 0 to 416.
pf = polyfit(x, y, 6);
% find x, when y = 100;
y_val = 100;
pf(end) = pf(end)-y_val;
x_vals = roots(pf);
x_vals = x_vals(imag(x_vals)==0); % if you only want real roots.
2 commentaires
Ameer Hamza
le 5 Oct 2020
I am glad to be of help!
Yes, symbolic mathematics is much slower as compared to numerical equivalent.
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Polynomials dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!