Generalization needed in dsolve code
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Pr = 1;
ODE = @(x,y) [y(2); y(3); -(1/2)*y(3)*y(1); y(5); - (Pr/2)*y(1)*y(5);];
BC = @(ya,yb)[ya(1);ya(2);ya(4)-1;yb(2)-1; yb(4);];
xa = 0; xb = 5; xn = linspace(xa,xb,100); x = xn;
solinit = bvpinit(x,[0 1 0 1 0]); sol = bvp5c(ODE,BC,solinit); S = deval(sol,x);
fV = deval(sol,0); p1 = fV(3); q1 = fV(5);
Pr = sym('Pr');x = sym('x');f0(x) = sym('f0(x)'); g0(x) = sym('g0(x)');
eqn0 = [ diff(f0,3) == 0, diff(g0,2) == 0];
cond0 = [f0(0) == 0, subs(diff(f0),0) == 0, subs(diff(f0),5) == 1, g0(0) == 1, g0(5) == 0];
F0 = dsolve(eqn0,cond0); f0 = F0.f0; g0 = F0.g0; % disp([f0,g0])
f1(x) = sym('f1(x)'); g1(x) = sym('g1(x)');
eqn1 = [ diff(f1,3) + (1/2)*f0*diff(f0,2) == 0, diff(g1,2) + (Pr/2)*f0*diff(g0) == 0];
cond1 = [f1(0) == 0, subs(diff(f1),0) == 0, subs(diff(f1),5) == 0, g1(0) == 0, g1(5) == 0];
F1 = dsolve(eqn1,cond1); f1 = F1.f1; g1 = F1.g1; %disp([f1,g1])
f2(x) = sym('f2(x)'); g2(x) = sym('g2(x)');
eqn2 = [ diff(f2,3) + (1/2)*(f0*diff(f1,2) + f1*diff(f0,2)) == 0, diff(g2,2) + (Pr/2)*(f0*diff(g1) + f1*diff(g0)) == 0];
cond2 = [f2(0) == 0, subs(diff(f2),0) == 0, subs(diff(f2),5) == 0, g2(0) == 0, g2(5) == 0];
F2 = dsolve(eqn2,cond2); f2 = F2.f2; g2 = F2.g2; %disp([f2,g2])
f3(x) = sym('f3(x)'); g3(x) = sym('g3(x)');
eqn2 = [ diff(f3,3) + (1/2)*(f0*diff(f2,2) + f1*diff(f1,2) + f2*diff(f0,2)) == 0, diff(g3,2) + (Pr/2)*(f0*diff(g2) + f1*diff(g1) + f2*diff(g0)) == 0];
cond2 = [f3(0) == 0, subs(diff(f3),0) == 0, subs(diff(f3),5) == 0, g3(0) == 0, g3(5) == 0];
F3 = dsolve(eqn2,cond2); f3 = F3.f3; g3 = F3.g3; %disp([f3,g3])
f = f0 + f1 + f2 + f3; f = collect(f,x);
g = g0 + g1 + g2 + g3; g = collect(g,x); g = subs(g,Pr,1);
figure(2),plot(xn,S(2,:),'LineWidth',1.5); axis([0 5 0 1]),xlabel('\bf\eta'); ylabel('\bff^{\prime}(\eta)');hold on,fplot(diff(f),[0 5],'--','LineWidth',1.5)
figure(4),plot(xn,S(4,:),'LineWidth',1.5); axis([0 5 0 1]),xlabel('\bf\eta'); ylabel('\bf\theta(\eta)');hold on,fplot(g,[0 5],'--','LineWidth',1.5)
%% I need to merge all the dsolve code into a single code to solve the problem given in attached pdf,
%% NUMERICAL code is of Eqns (12) & (14) but dsolve code is of Eqns (17) - (24).
%% Any attempt will be a great work
9 commentaires
Walter Roberson
le 23 Oct 2020
Here is the technical trick you need:
num_f = 31;
syms x
funs = arrayfun(@(idx) str2sym(sprintf('f%d(x)', idx)), 0:num_f-1);
d1 = arrayfun(@(f)diff(f,x), funs);
d2 = arrayfun(@(f)diff(f,x), d1);
d3 = arrayfun(@(f)diff(f,x), d2);
Now you can proceed with other arrayfun that create your equations in vectorized form, like sum(funs) for f0 + f1 + ... f30
MINATI PATRA
le 24 Oct 2020
Modifié(e) : MINATI PATRA
le 24 Oct 2020
@Dear Walter, how to include B.Cs (It is slightly different for f0 and other steps)
%% Please arrange this to run
Pr = 1;
ODE = @(x,y) [y(2); y(3); -(1/2)*y(3)*y(1); y(5); - (Pr/2)*y(1)*y(5);];
BC = @(ya,yb)[ya(1);ya(2);ya(4)-1;yb(2)-1; yb(4);];
xa = 0; xb = 5; xn = linspace(xa,xb,100); x = xn;
solinit = bvpinit(x,[0 1 0 1 0]); sol = bvp5c(ODE,BC,solinit); S = deval(sol,x);
fV = deval(sol,0); p1 = fV(3); q1 = fV(5);
Pr = sym('Pr');x = sym('x');f0(x) = sym('f0(x)'); g0(x) = sym('g0(x)');
eqn0 = [ diff(f0,3) == 0, diff(g0,2) == 0];
cond0 = [f0(0) == 0, subs(diff(f0),0) == 0, subs(diff(f0),5) == 1, g0(0) == 1, g0(5) == 0];
F0 = dsolve(eqn0,cond0); f0 = F0.f0; g0 = F0.g0; % disp([f0,g0])
num_f = 31; num_g = 31; syms x
funs = arrayfun(@(idx) str2sym(sprintf('f%d(x)', idx)), 0:num_f-1);
df1 = arrayfun(@(f)diff(f,x), funs); df2 = arrayfun(@(f)diff(f,x), df1); df3 = arrayfun(@(f)diff(f,x), df2);
guns = arrayfun(@(idx) str2sym(sprintf('g%d(x)', idx)), 0:num_g-1);
dg1 = arrayfun(@(g)diff(g,x), guns); dg2 = arrayfun(@(g)diff(g,x), dg1); dg3 = arrayfun(@(g)diff(g,x), dg2);
f = sum(funs); g = sum(guns);
figure(1),plot(xn,S(2,:),'LineWidth',1.5); axis([0 5 0 1]),xlabel('\bf\eta'); ylabel('\bff^{\prime}(\eta)');hold on,fplot(diff(f),[0 5],'--','LineWidth',1.5)
figure(2),plot(xn,S(4,:),'LineWidth',1.5); axis([0 5 0 1]),xlabel('\bf\eta'); ylabel('\bf\theta(\eta)');hold on,fplot(g,[0 5],'--','LineWidth',1.5)
Réponses (0)
Voir également
Catégories
En savoir plus sur Calculus dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!