Computing the absolute error
5 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Cecilio Flores Roque
le 8 Oct 2020
Modifié(e) : Ameer Hamza
le 8 Oct 2020
How do I compute the absolute error n = |xn − xr| for n = 0, 1, . . . , 50, where we take the output xr from MATLAB’s fzero function with initial guess xinit = 1 to be the “true” root, given this.
xn = bisectionMethod(f, a, b, numiter)
f1= @(x) cos(x)-x;
f2= @(x) exp(-x^2)-x;
f3= @(x) (x^3)-(1/2);
x1= bisectionMethod(f1, 0, 1, 50);
x2= bisectionMethod(f2, 0, 1, 50);
x3= bisectionMethod(f3, 0, 1, 50);
0 commentaires
Réponse acceptée
Ameer Hamza
le 8 Oct 2020
Modifié(e) : Ameer Hamza
le 8 Oct 2020
Consider one function
f1 = @(x) cos(x)-x;
x1r = fzero(f1, 0);
You can do it like this
n = 0:50;
x1n = zeros(size(n)); % all solutions for f1
for i = 1:numel(x1n)
x1n(i) = bisectionMethod(f1, 0, 1, n(i));
end
err = abs(x1n-z1r);
A more efficient approach is to modify bisectionMethod() function such that it returns a complete vector in a single call. The above code is repeating the same calculations several times.
0 commentaires
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Generating and Calling Reentrant Code dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!