Portfolio Optimization with LASSO

17 vues (au cours des 30 derniers jours)
ANDREA MUZI
ANDREA MUZI le 12 Oct 2020
I have to find the optimal portfolio adding the "l-1 norm" constraint to the classical mean-variance model. How can i write this optimization in matricial form ?

Réponses (2)

Ameer Hamza
Ameer Hamza le 12 Oct 2020
Modifié(e) : Ameer Hamza le 12 Oct 2020
This shows an example for the case of 5 portfolios
mu = rand(1, 5);
eta = 0.5;
Sigma = ones(5);
Aeq = [mu; ones(1, 5)];
Beq = [eta; 1];
x0 = rand(5,1); % initial guess
sol = fmincon(@(x) x.'*Sigma*x, x0, [], [], Aeq, Beq, [], [], @nlcon);
function [c, ceq] = nlcon(x)
c = sum(abs(x))-1;
ceq = [];
end
  4 commentaires
ANDREA MUZI
ANDREA MUZI le 12 Oct 2020
equal to eta
Ameer Hamza
Ameer Hamza le 12 Oct 2020
Then the code in my answer satisfies all the constraints. You can verify
mu = rand(1, 5);
eta = 0.5;
Sigma = ones(5);
Aeq = [mu; ones(1, 5)];
Beq = [eta; 1];
x0 = rand(5,1); % initial guess
sol = fmincon(@(x) x.'*Sigma*x, x0, [], [], Aeq, Beq, [], [], @nlcon);
function [c, ceq] = nlcon(x)
c = sum(abs(x))-1;
ceq = [];
end
Results
>> mu*sol % output is eta
ans =
0.5000
>> sum(sol) % sum is 1
ans =
1
>> sum(abs(sol)) % sum of absolute values is 1
ans =
1

Connectez-vous pour commenter.


ANDREA MUZI
ANDREA MUZI le 12 Oct 2020
I thank you but it is not the result I expected; I try to rephrase the question. I found a way to linearize the constraint on the weights norm (photo). Basically I have to find the vector between tmin and tmax, in which tmin penalizes all the weights of the assets, bringing them to zero, except one whose weight will be equal to 1 and tmax, whose value will not penalize any asset

Catégories

En savoir plus sur Linear Programming and Mixed-Integer Linear Programming dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by