How to combine three different figures for three different vectors in one figure?
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Here, for a = 9.1 or 3.99 or 1.1 and b = 4 or 2 or 2 i can get one single plot where i am verying another variable segma. But i want to combine them in one figure. so that i can compare them from one plot.
clc
clear variables
close all
M=16;
segma_N = 10.^-7;
p_db = 0:5:30;
p = 10.^(p_db/10);%power
R = 0.5; %Optoelectronic conversion factor
a = 9.1; %a=[9.1 3.99 1.1];
b = 4; %b=[4 2 2
];
rng(1);
I = abs(random('normal',1,2,1,100,1))*1e-8;
%segma =[(0.0647*0.115129255) (0.7360*0.115129255) (4.2850*0.115129255)];
segma =[0.4472 1.264 1.870];
nz = zeros(1, length(p_db));
%ze = zeros(1, length(p_db));
for k=1:length(segma)
for j = 1:length(nz)
ynz = qfunc(sqrt(2*((p(j).*R.*I)./segma_N).^2)).*nzpdf(I,segma(k)); %Bpsk
nz(k,j) = trapz(I, ynz);
end
end
% Plot
figure
semilogy(p_db,nz(1,:),'-ks','MarkerFaceColor','k')
hold on
semilogy(p_db,nz(2,:),'-ro','MarkerFaceColor','r')
semilogy(p_db,nz(3,:),'-b^','MarkerFaceColor','b')
grid on
xlabel('P [dB]')
ylabel('ABER')
title('Intial Results')
legend('Very clear air','Haze','Light fog')
xlim([0 30])
grid on
for the function nzpdf
function G = nzpdf(I,segma)
a = 9.1;
b = 4;
c = 0.2; %Gamma %Average optical power of classic scattering component received by off-axis eddies
%d =0.8; %Big omega prime Average optical power of coherent contributions
p_db = 0:5:30;
P= 10.^(p_db/10);%power
z = 2; %Propagation Distance
%segma = (8*0.115129255); %Atmospheric attenuation coefficient
%segma =(4.2850*0.115129255);
s = 0.3; %Zero boresight
I1 = exp(-segma*z); %Atmospheric attenuation
omega=1.3265;
b_0=0.1079; %Average power of the coupled-to-LOS scattering component
row=0.25; %Scattering power coupled to the LOS component
d=(omega+row.*2.*b_0+2.*sqrt(2.*b_0.*omega.*row));%Big omega prime Average optical power of coherent contributio
Aperture_radius = 0.1; %Aperture_radius
segma_s = 0.2; %Jitter standard deviation
omega_z = 2.5; %Beam Width
v = (sqrt(pi)*Aperture_radius)/(sqrt(2)*omega_z);
omega_zeq_2 = (omega_z^2)*(sqrt(pi)*erf(v))/(2*v*exp(-(v^2)));
g = omega_zeq_2/(2*segma_s);
A0 = (erf(v))^2;
A = (2*(a^(a/2))/((c^(1+a/2))*gamma(a)))*(((c*b)/(c*b+d))^(b+a/2));
First = (2*pi*(g^2)*A*exp((-(s^2))/(2*(segma_s^2))))/(omega_zeq_2);
count1 = 0;
for k= 1:b
ak = (nchoosek(b-1,k-1))*(((c*b+d)^(1-k/2))/gamma(k))*((d/c)^(k-1))*((a/b)^(k/2));
Summation_1 = ak*(I.^(((a+k)/2)-1)) / ( ((A0*I1)^((a+k)/2)) * sin(pi*(a-k)) );
count2 = 0;
for p = 0:length(P)
Part1 = (((a*b.*I)/((c*b+d)*A0*I1)).^(p-(a-k)/2)) / (gamma(p-(a-k)+1)*factorial(floor(p)));
Part2_1 = (-omega_zeq_2) / ((4*(p+k-(g^2))));
Part2_2 = exp(((-omega_zeq_2)*(s^2)) /(8*(p+k-(g^2))*segma_s^4));
Sum1 = Part1 .* (Part2_1 *Part2_2);
Part3 = (((a*b.*I)/((c*b+d)*A0*I1)).^(p+(a-k)/2)) / (gamma(p+(a-k)+1)*factorial(floor(p)));
Part4_1 = (-omega_zeq_2) / ((4*(p+a-(g^2))));
Part4_2 = exp(((-omega_zeq_2)*(s^2)) / (8*(p+a-g^2)*segma_s^4));
Min1 = Part3.*( Part4_1*Part4_2);
Summation_2 = Sum1 - Min1;
count2 = count2 + Summation_2;
end
count1 = count1 + count2.*Summation_1;
end
G = First.*count1;
end
0 commentaires
Réponses (0)
Voir également
Catégories
En savoir plus sur Bessel functions dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!